• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ischemia-induced inflammation is increased and satellite-cell activation is decreased in TNFR2/P75 knockout hindlimb ischemia model

Rahimi, Layla Marie 22 January 2016 (has links)
OBJECTIVE: Tumor necrosis factor-alpha (TNF-α) is a multifunctional proinflammatory cytokine that plays a critical role in mediating inflammatory and immunological responses. TNF-α has been shown to elicit both beneficial and detrimental biological effects by acting through its two receptors, TNFR1/p55 and TNFR2/p75. Previous studies from this laboratory have shown that TNF-TNFR2/p75 signaling plays a critical role in ischemia-induced neovascularization in muscle and heart tissues. However, the role of TNF-TNFR2/p75 signaling in ischemia induced inflammation and muscle regeneration remains to be characterized. METHODS: To evaluate ischemia induced inflammation responses, young wild type (WT) and young TNFR2/p75 knockout (p75KO) mice were subjected to unilateral hind limb ischemia (HLI) surgery. Operated hind limb tissue samples were collected at 1, 3, 7, and 10 days post-HLI surgery and studied for neutrophil (myeloperoxidase-1 positive cells) and macrophage (F4/80 positive cells) infiltration as well as satellite-cell activation (neural cell adhesion molecule positive cells) at each time point. To determine possible synergistically negative roles of tissue aging and the absence of TNFR2/p75 in either the tissue or bone marrow (BM), two chimeric BM transplantation (BMT) models were generated where young Green Fluorescent Protein (GFP) positive (+) p75KO and WT BM-derived cells were transplanted into adult p75KO mice. HLI surgery was performed one month post-BMT, after confirming complete engraftment of the recipient BM with GFP donor cells. Operated hind limb tissue samples were evaluated up to 28 days post-surgery to examine proliferation and apoptosis of BM-derived cells in ischemic tissue. RESULTS: Ischemia induced significant and long-lasting inflammation associated with a considerable decrease in satellite-cell activation in p75KO muscle tissue 1-10 days post-HLI surgery. For the BMT studies, in adult p75KO with the WT-BMT, proliferative (Ki67+) cells were detected only by day 28 and were exclusively GFP (+), suggesting delayed contribution of young WT-BM cell to adult p75KO ischemic tissue recovery. No GFP (+) young p75KO BM cells survived in adult p75KO tissue. CONCLUSION: The data demonstrate that: (1) ischemia-induced recovery in skeletal muscle tissue is impaired in young p75KO mice; (2) inflammatory responses are significantly increased and long-lasting in p75KO mice; (3) in the absence of TNFR2/p75 signaling, satellite-cell activation is affected in p75KO mice; (4) during post-ischemic recovery, tissue aging combined with decreased/absent TNFR2/p75 signaling may have synergistically negative roles on survival and proliferation in the damaged tissue.

Page generated in 0.0376 seconds