• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic cracking of jet propellant-10 : for Pulse detonation engine applications

Galligan, Carrie 11 April 2018 (has links)
Le carburant hydrocarbure JP-10 est étudié comme agent propulsif destiné aux moteurs à détonation ainsi qu’à d’autres applications concernant les vols à vitesses élevées. La précraquage catalytique du JP-10 pourrait produire un mélange d’oléfines légères plus facile à détoner. Un mélange d’hydrocarbures aliphatiques, pour la plupart légers, présente l’avantage d’être moins enclin à la carbonisation que des mélanges comportant de fortes teneurs en hydrocarbures aromatiques. Cette réaction endothermique de précraquage offre le même potentiel que celui d’un puits de chaleur trouvé dans des applications de vols à vitesses élevées pour lesquelles toute hausse de la masse du système de refroidissement contrevient à une plus grande efficacité du moteur. Plusieurs essais de craquage catalytique hétérogène furent réalisés à l’aide d’un réacteur tubulaire et les gaz produits analysés par GC/MS et par GC. Deux formes de zéolithe nanocristalline (n) ZSM-5(24h) et nZSM-5 (6h) et trois formes de silico-aluminophosphate SAPO-5A, SAPO-5B et SAPO-11 furent testées. SAPO-5 et nZSM-5(24h) apparaissent être les candidats les plus propices au précraquage du JP-10. Ces dernières ont permis de convertir plus de 90 % de JP-10 en un mélange d’hydrocarbures principalement composé de molécules en C4 et moins (C3 à C1). nZSM-5(24h) ont procuré le plus petit rapport de masse de carbone, CR (C5+:C4−), à des températures situées entre 350 oC et 450 oC et le taux de conversion le plus élevé à des températures supérieures à 500 oC. SAPO-5A & B ont présenté le taux de conversion le plus élevé mais le plus petit CR entre 400 oC et 500 oC. / The hydrocarbon jet-fuel, JP-10, is being studied as a possible propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications. Catalytic pre-cracking of JP-10 could provide a more easily detonated mixture of light olefin products. A mixture of mostly light hydrocarbons has the added benefit of being less prone to coking than a product mixture heavy in aromatics. This endothermic reaction also offers potential as a heat sink in high-speed flight applications where the extra weight of an onboard cooling system would hinder engine efficiency. Several heterogeneous catalytic cracking tests have been done using a Bench Top Tubular Reactor and the products were analyzed with GC/MS and GC. Two forms of nanocrystalline zeolites, nZSM-5(24h) and nZSM-5(6h), and three forms of silico-alumino-phosphates, SAPO-5A, SAPO-5B, and SAPO-11 successfully catalyzed the cracking of JP-10; however, SAPO-5 and nZSM-5(24h) have proven to be the most promising catalyts. Both catalysts converted over 90 % of JP-10 (∼ 3s residence time) into a mixture of hydrocarbon products consisting mainly of C4 and lower chain hydrocarbons (C3 to C1). nZSM-5(24h) demonstrated the lowest carbon mass ratio, CR (C5+:C4−), between 350 oC and 450 oC and the highest conversion rates above 500 oC. SAPO-5A & B demonstrated the highest conversion rates and the lowest CR between 400 oC and 500 oC.
2

Injection de mousses composites bois/plastiques d'origine post-consommation

Gosselin, Ryan 11 April 2018 (has links)
Dans cette étude, des matériaux composites bois/plastiques moussés ont été produits par une méthode de moulage par injection. En particulier, les composites sont constitués de fibres de bois et d'une matrice de polyoléfines recyclées (mélange de HDPE et PP). La décomposition thermique de l'azodicarbonamide (ACA), un agent gonflant chimique, fournit le gaz nécessaire à la formation de la mousse microcellulaire. Afin d'étudier ces composites, nous avons varié la concentration de bois, la température du moule ainsi que la teneur en agent gonflant. La caractérisation microscopique des échantillons comprend l'analyse de la structure cellulaire, de l'épaisseur de peau ainsi que de la morphologie des fibres. Les résultats montrent que la température du moule et la teneur en agent gonflant ont très peu d'influence sur la morphologie cellulaire à l'intérieur de la plage de valeurs étudiées. Par ailleurs, l'augmentation de la teneur en fibres augmente le diamètre cellulaire à cause de la nature de l'interface bois/plastiques. Enfin, les tests mécaniques en flexion, torsion, impact et traction ont pour but de caractériser l'effet du bois et du moussage sur ces matériaux tout en liant les propriétés mécaniques aux analyses microscopiques. On observe que les propriétés des échantillons sont supérieures en présence de fibres de bois mais légèrement inférieures lorsque moussés.

Page generated in 0.0276 seconds