• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • Tagged with
  • 122
  • 122
  • 122
  • 122
  • 122
  • 16
  • 14
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis And Characterization Of Zeolite Beta

Tamer, Nadir Hakan 01 July 2006 (has links) (PDF)
Zeolite beta has been synthesized using hydrothermal methods. In order to synthesize zeolite beta an aqueous gel having a molar batch composition of 2.2 Na2O&amp / #8729 / Al2O3&amp / #8729 / x SiO2&amp / #8729 / 4.6 (TEA)2O&amp / #8729 / 444 H2O was utilized. The synthesis parameters were SiO2/Al2O3 ratio (20 &amp / #8804 / x &amp / #8804 / 50) and crystallization time (6 &amp / #8804 / t &amp / #8804 / 16 days). Pure zeolite beta was crystallized from the experiments which were performed with the batch composition having SiO2/Al2O3 of 20 and 30 in 6 to 16 days period. For SiO2/Al2O3 of 20 and 30, the highest yield was obtained for 12 days. Therefore, the rest of the experiments, in which SiO2/Al2O3 was 40 and 50, were carried out keeping the synthesis time constant (12 days). Pure zeolite beta was also synthesized for SiO2/Al2O3 of 40 and 50. The highest yield and the most crystalline zeolite beta sample were obtained from the experiment performed at SiO2/Al2O3 of 50 with a synthesis time of 12 days. The morphology and crystal size of the zeolite beta samples were identified by using scanning electron microscope (SEM). It was observed that, zeolite beta samples had spheroidal morphology with the crystal size of about 0.5 &amp / #956 / m. According to the thermogravimetric analyses (TGA), it was found that template molecules and moisture constituted nearly 18 % by weight of the zeolite beta samples. The surface area of the calcined zeolite beta sample was determined by N2 adsorption and was found to be 488 m2/g. Gravimetric sorption analyses yield that, the limiting sorption capacity of Na-Beta for methanol, ethanol, isopropanol and n-butanol at 0&deg / C was about the same with a value of 0.25 cm3/g. For o-xylene, m-xylene and p-xylene that value was 0.21 cm3/g, 0.22 cm3/g and 0.24 cm3/g, respectively.
2

Acidity Characterization And Adsorption Characteristics Of Cobalt And Lead Doped Sba-15 Mesoporous Materials

Guner, Ozge 01 September 2007 (has links) (PDF)
In this study, the surface acidity of Co and/or Pb doped SBA15 mesoporous catalysts were investigated by both diffuse reflectance fourier transform (DRIFT) infrared spectroscopy and transmission mode fourier transform infrared spectroscopy. Pyridine was used to identify the Br&oslash / nsted and Lewis acid sites of the surface, at room temperature. From the DRIFT spectrum typical stretching vibrations of isolated terminal silanol (Si-OH) groups were observed for all the catalysts. These silanol group bands dissappeared after pyridine adsorption, indicating that these silanol groups are acidic and serve as chemical adsorption sites for pyridine. Pyridine adsorption on these catalysts revealed that while monometallic additions did not influence the overall acidity of SBA15, in the bimetallic system, characteristic bands due to pyridine adsorption on Co2+ ions were observed.
3

Process Development For Continuous Photofermentative Hydrogen Production

Boran, Efe 01 February 2011 (has links) (PDF)
By the integration of dark and photo fermentative hydrogen production processes, higher yields of hydrogen can be obtained from biomass. In the first step, biomass is utilized for hydrogen production by dark fermentation and in the second step, the effluent of dark fermentation is further utilized for hydrogen production by photofermentation using photosynthetic purple non-sulfur bacteria. The purpose of this study was to develop a solar pilot scale tubular photobioreactor (PBR) for continuous photo fermentative hydrogen production from the effluent of dark fermentation. This study demonstrated the implementation of the solar pilot tubular PBR for this new technology for the first time and successful continuous operations were performed in different seasons. Two different strains of Rhodobacter capsulatus were used for the operations. It was showed that even in winter, pure hydrogen could be produced in the pilot PBR with an average productivity of 0.3 mol H2/m3.h, when circulation of the PBR was continuous. Productivity obtained by the mutant strain was 0.2 mol H2/m3.h with periodical circulation. The integration between dark and photo fermentation was proven at pilot scales by using real dark fermenter effluents of molasses and thick juice. DFE of thick juice yielded a maximum productivity of 0.27 mol H2/m3.h whereas the maximum productivity obtained from DFE of molasses was 0.12 mol H2/m3.h. The most important factor affecting productivity is found to be the total received light energy and a yield factor (mmol H2/g dry cell weight) was correlated with total received light energy. Acetic acid consumption rates were found to be first order for daytime and zero order for nights. Furthermore acetic acid utilization for different metabolic pathways were estimated and by-product, poly- &beta / - hydroxybutyrate, specific rates of product formation were determined.
4

Dissolution Of Colemanite And Crystallization Of Gypsum During Boric Acid Production In A Batch Reactor

Erdogdu, Anil 01 June 2004 (has links) (PDF)
One of the most commonly used boron compounds, boric acid, is produced by dissolving colemanite (2CaO&times / 3B2O3&times / 5H2O) in aqueous sulfuric acid whereby gypsum (CaSO4&times / 2H2O) is formed as a byproduct and must be separated from the main product. This process consists of two steps, dissolution of colemanite and formation of gypsum. The amount of boric acid formed depends on the first step, dissolution of colemanite. In the latter step, gypsum crystals are formed and stay in the reaction mixture to grow up to a size large enough to be filtered out of the solution. Filtration of gypsum crystals is a crucial process in boric acid production because it affects the purity and crystallization of boric acid. In this study it is aimed to investigate the effects of particle size of colemanite, stirring rate and reaction temperature on the dissolution of colemanite, gypsum formation and particle size distribution of gypsum formed in the reaction of boric acid production. Colemanite, sulfuric acid and distilled water were used as reactants for the boric acid production reaction in this study.The colemanite minerals were provided from a region of Emet, Kutahya, Turkey. Three types of colemanite minerals having different chemical composition and particle size were used. The sulfuric acid was supplied by Eti Holding A.S. Hisarcik 1 and Hisarcik 2 colemanites were crushed in a jaw crusher, ground in a hammer mill and then sieved. The sieve analysis was performed to learn the size distribution of Hisarcik 1 and Hisarcik 2 colemanite. Hisarcik 3 colemanite was brought from Emet Boric Acid Plant. The maximum diameter of the colemanite minerals was 150 &amp / #956 / m. The experiments were performed at different particle sizes of colemanite (0-150, 0-250 and 250-1000 &amp / #956 / m), temperatures (70- 90 &amp / #61616 / C) and stirring rates (350-500 rpm). The photographs of gypsum crystals were taken. The boric acid and calcium ion concentrations were determined for each experiment. Also, the solid content of the solution in the reactor were measured. The dissolution of colemanite can be followed by monitoring the boric acid concentration change in the slurry. The crystallization of gypsum from the solution can be found from the calcium ion concentration in the solution. The crystallization kinetics of calcium sulfate dihydrate was studied. The growth of the gypsum crystals were examined under the light microscope and the particle size distribution of gypsum crystals were analyzed by of the laser diffraction instrument.
5

Surface Properties Of Carbon Nanomaterials

Ok, Sinan 01 August 2005 (has links) (PDF)
Carbon can be in several forms. Amorphous, graphite and diamond. Fullerenes are accepted as the fourth form of solid carbon. They are basically, large carbon cage molecules. By far the most common one is C60. Nanotubes are actually longer forms of fullerenes. If a voltage is applied between two carbon rods, an arc will develop between them. If the arc is maintained in helium or argon (instead of air) clouds of black carbon powder is produced. Although many studies have been performed on cathodic deposits, (i.e. nanotubes first seen in this section) very few studies on the carbon sooth are found in the literature. Only around 10% of the black soot is fullerene, the composition of the remainder varies depending on the working conditions. But it is assumed to contain parts of various fullerene particles even higher fullerenes up to C300. This fraction is abbreviated as FES through the thesis. This work comprises the production of FES (fullerene extracted soot), soot, cathodic deposit produced under nanotube conditions and cathodic deposit produced under fullerene conditions and characterization of these in terms of their specific surface areas / pore volume distribution, porosity and as a second part, adsorption capacity of gases H2 and NH3 have been found. Both physical and chemical adsorption analyses were done using Quantichrome Autosorb 1-C surface analyzer. Obtained isotherms for nitrogen adsorption were found to be in between type II and type IV. BET surface areas for the samples of FES and soot prepared under nanotube conditions and cathodic deposit prepared under fullerene and nanotube conditions were found 240, 180, 14.6 and 29.7 m2/g of surface area respectively. Micropore volumes were calculated from Horwath - Kowazoe and Saito - Foley methods were found 0.045, 0.034, 2.38*10-3 and 1.19*10-3 cc/g respectively. Active surface areas for NH3 adsorption were found for FES, soot and Norit active carbon sample are found to be 39.2, 49.6, 32.5 m2/g at 300 C and 6.35, 14.65, 6.59 m2/g at 3000 C respectively. As a result of this work, it is concluded that although not superior to NORIT CN1 active carbon sample, FES is as active as that material and able to adsorb as much hydrogen as active carbon. This is important because FES is already a side product of the arc-evaporation fullerene production technique and has no known uses at all.
6

Heat Exchanger Network Synthesis With Detailed Design: Reformulation As A Shortest Path Problem By Temperature Discretization

Kirkizoglu, Isil 01 September 2012 (has links) (PDF)
This study presents an optimization approach to heat exchanger network synthesis (HENS). HENs are widely used in industry and bring several fluid streams into their desired temperatures by using available heat in the process for efficient usage of energy. Our aim is to provide a network design coupled with a detailed equipment design for heat exchangers. The suggested approach involves discretization of temperatures based on heat load equalities and reformulation as a shortest-path problem, rather than dealing with a nonlinear model and a previously structured HEN, which are common methods in the literature. We generate a shortest path network whose every node corresponds to a heat exchanger alternative and each path represents a HEN design alternative. A mixed-integer nonlinear programming model is solved to design each exchanger alternative in detail, considering all thermo-physical and transport properties of streams at their temperatures and pressures. Our approach has modeling flexibility and successfully finds the required number of heat exchangers and their connections. In addition, one can control the solution quality by deciding on the heat load steps between stream inlet and outlets. Several HEN examples from the literature are solved to assess the performance of our approach and comparable results are obtained.
7

The Photocatalytic Activity Of Praseodymium Doped Titanium Dioxide

Dogu, Doruk 01 October 2012 (has links) (PDF)
In this study nanocrystalline TiO2 was synthesized by a sol-gel process. The effect of praseodymium (Pr) doping and calcination conditions on the textural properties of nano structured particles and photocatalytic activity were examined. Samples were synthesized by hydrolyzation of titanium tetra iso-propoxide (TTIP) and calcination at different temperatures. Characterizations of the samples were carried out using XRD, BET, XPS, TEM, and EDAX analyses. It was observed that anatase to rutile transformation is favored by higher calcination temperatures. The XRD analysis indicated that the anatase structure is stabilized by Pr doping and rutile phase formation at higher calcination temperatures is inhibited by the addition of Pr. It was also observed that Pr doping enhances the surface area and inhibit crystal growth. Phase stabilization effect of Pr doping was also confirmed by XPS results. EDAX analysis revealed that Pr is dispersed atomically in the crystal structure. The Photoluminescence analysis by 325 nm excitation indicated the emissions at 608 and 621 nm which can be attributed by photon up-conversion. The photocatalytic activities of the samples were measured by methylene blue degradation and phenol mineralization reactions. The photocatalytic activities of the Pr doped samples were also found higher than undoped TiO2 samples.
8

Production Of Boron Nitride Nanotubes From The Reaction Of Nh3 With Boron And Iron Powder Mixture

Noyan, Selin 01 September 2012 (has links) (PDF)
Boron nitride nanotubes (BNNTs), which are structurally similar to carbon nanotubes (CNTs), were synthesized in 1995 for the first time. They are made up by folding atom sheets which consist of boron and nitrogen atoms into cylindrical form. After their discovery, BNNTs have been attracting great attention due to their extraordinary mechanical, thermal, electrical, and optical properties. In this study, BNNTs were synthesized from the reaction of ammonia gas with the boron and iron powder mixture in a tubular reactor which was connected to a mass spectrometer for on-line chemical analysis of the reactor effluent stream. The synthesized materials were purified with acid treatment. Chemical analysis results showed that nitrogen and hydrogen gases were present in addition to ammonia gas. XRD results revealed that the solid phases in the synthesized material were hexagonal boron nitride, rhombohedral boron nitride, iron, and boron-iron compounds (FeB49 and Fe3B). Reactions taking place in BNNT synthesis were proposed as the decomposition of ammonia gas which was the only gas phase reaction, the formation of boron-iron compounds from the reaction of boron with iron, and boron nitride formation from the reaction of nitrogen with boron-iron compounds. Agglomerated, hollow, multi-walled nanotubes were synthesized with an outer diameter range of 10-550 nm. Both open and close-ended nanotubes were observed. The interlayer distance between BN sheets was measured about 0.33 nm and this distance indicated the d002 plane of hexagonal boron nitride. BNNTs exhibited Type II isotherms with a Type B hysteresis. A decrease in the surface area of the synthesized BNNTs was observed with an increase in temperature. The highest surface area was 147.6 m2/g. Average pore diameter of BNNTs synthesized at different temperatures was around 38 &Aring / . Deposition rate of boron nitride increased with an increase in temperature. After a certain temperature, deposition rate decreased with temperature due to the sintering effect. The highest deposition rate was observed when BNNTs were synthesized with the B/Fe weight ratio of 15/1 at 1300 &deg / C.
9

Supported Ru Based Ammonia Synthesis Catalysts

Aslan, Mustafa Yasin 01 October 2012 (has links) (PDF)
Ru/C type ammonia synthesis catalysts are known to be poisoned by hydrogen. In order to elucidate a mechanism for hydrogen poisoning, H2 adsorption and spillover on Ru based ammonia synthesis catalysts were investigated. Supported Ru catalysts and Na promoted Ru catalyst were prepared by incipient wetness impregnation of Ru(NO)(NO3)3 on SiO2, SBA-15, CNT and Vulcan supports. Dispersion value of the catalysts was determined via H2 chemisorption and Transmission Electron Microscopy (TEM) characterization techniques. Over SBA-15 support, the dispersion of the catalyst determined by two different characterization techniques were in agreement. On the other hand, over CNT and SiO2 supports dispersion measured by TEM characterization method was higher than H2 chemisorption method. H2 chemisorption measurements performed over extended periods of time were used to determine the spilled over hydrogen amounts over Ru/Vulcan and Na-Ru/Vulcan catalysts at 375 torr and 10 torr H2 pressure at room temperature. By using H2 uptake data measured for extended periods of 6 &ndash / 24 hours, diffusion coefficient of hydrogen species over Vulcan support was calculated assuming a point source diffusion mechanism. Coefficient of diffusion for Ru/Vulcan and Na-Ru/Vulcan was found as 1.39 x 10-14 cm2/sec and 1.23 x 10-14 cm2/sec, respectively at 375 torr. Similarly, at 10 torr, diffusion coefficients of Ru/Vulcan and Na-Ru/Vulcan catalysts were determined as 1.51 x 10-15 cm2/sec and 1.81 x 10-15 cm2/sec, respectively.
10

Effects Of Co-carbon Sources In Recombinant Human Erythropoietin Production By Pichia Pastoris

Eskitoros, Sukran Melda 01 January 2013 (has links) (PDF)
In this study, it was aimed to investigate the effects of different co-carbon sources on therapeutically important glycoprotein, recombinant human erythropoietin (rHuEPO) production by Pichia pastoris by designing feeding strategies which were applied in the production phase of the bioprocess. During the experiments, the cell growth, sorbitol, mannitol, and methanol consumptions, recombinant human EPO production, alcohol oxidase activity, total protease concentrations and the by-products organic acid concentrations were analyzed. In this context, firstly, laboratory scale air filtered shake bioreactor experiments were performed by P. pastoris Mut+ strain to investigate the effects of mannitol and sorbitol. 50 gL-1 initial concentration of co-substrates was found more affordable and appropriate for cell concentration and recombinant protein production. Thereafter, six pilot scale bioreactor operations were designed and performed. In the first designed strategy (named as SSM strategy), batch-wise 50 g L-1 sorbitol was fed at t=0 h of the production phase and then sorbitol concentration was kept constant at 50 g L-1 by fed-batch feeding with a pre-determined specific growth rate of &mu / Srb0=0.025 h-1 within t=0-15 h of the production phase together with fed-batch methanol feeding with a pre-determined specific growth rate of &mu / M0=0.03 h-1. In the following bioreactor experiments co-substrate mannitol was fed to the system with different feeding strategies together with fed-batch methanol feeding with a pre-determined specific growth rate of &mu / M0=0.03 h-1. In the second strategy (MM), only 40 g L-1 mannitol was added to the system at t=0 h of the production phase. In the third strategy (MMM), after adding 50 g L-1 mannitol at t=0 h, mannitol concentration was kept constant at 50 g L-1 by fed-batch feeding with a pre-determined specific growth rate of &mu / Man0=0.11 h-1 within t=0-9 h of the production phase when the same cell concentration was attained in SSM strategy. In the fourth one (MLM), limiting amount of mannitol, 3 g L-1, was added at t=0 h and then mannitol concentration was kept constant at 3 g L-1 by fed-batch feeding with a pre-determined specific growth rate of &mu / Man0=0.005 h-1 within t=0-10 h of the production phase. After these strategies, several pulses, batch-wise, mannitol feeding strategies were performed. In the fifth strategy (MPM), besides 50 g L-1 initial mannitol feeding at t=0 h, adding second batch-wise mannitol at t=6 h, and third one at t=12 h were applied. In the last strategy (MPMG), four 50 g L-1 pulse feeding of mannitol were performed at t=0 h, 7 h, 14 h, and 24 h, containing glycerol, with an initial concentration in the fermentation medium being 8 g L-1. The highest extracellular rHuEPO production was achieved in the fifth strategy MPM as CrHuEPO=645 mg L-1 at t=9 h while the highest cell concentration was achieved in the first strategy SSM as Cx=109 gL-1 at t=48 h. The overall cell and product yields on total substrate were calculated as YX/St=0.22 g g-1 and YP/St=2.23 mg g-1 in the highest rHuEPO production case.

Page generated in 0.1141 seconds