101 |
Autoradiographic studies of GABA-ergic neurons in mouse cerebellum / GABA-ergic neurons in mouse cerebellum.Mpinga, Manuel Mikeseni 03 June 2011 (has links)
Ball State University LibrariesLibrary services and resources for knowledge buildingMasters ThesesThere is no abstract available for this thesis.
|
102 |
An autoradiographic study of pentosan deposition in the cell walls of Populus tremuloides MichxMullis, Ralph H. 01 January 1975 (has links)
No description available.
|
103 |
THE EARLY PRODUCTS OF RADIOACTIVE PHOSPHATE ESTERIFICATION BY BARLEY ROOTSElbagouri, Ismael Hamdi Mahmoud, 1938- January 1966 (has links)
No description available.
|
104 |
THE SYNTHESIS OF SPECIFICALLY DEUTERATED AMINO ACIDS AND PEPTIDES FOR USE IN BIOPHYSICAL STUDIESUpson, Donald Allen, 1946- January 1975 (has links)
No description available.
|
105 |
The size dependence of radiophosphorus bioaccumulation in the freshwater plankton /Vézina, Alain January 1984 (has links)
Body size influences virtually all aspects of the autecology of material flow by organisms. Thus, size classes may be considered as alternatives to grouping by trophic level, function or taxonomy to describe the structure and function of communities. The general intent of this thesis is to assess the role of body size in the dynamics of radiophosphorus in the freshwater plankton. To calculate a priori estimates of the fluxes of phosphorus through size classes of plankton, the rates of assimilation and excretion of laboratory cultures of algae and cladocerans were measured, and regressed on body mass (W). In both groups, assimilation increased as W('0.75). The turnover of body phosphorus was described as a two-compartment system. The turnover rates of the small (2-5% of body P) fast turnover pool, the large (95-98%) slow turnover pool, and that of the body phosphorus fell proportionately to W('- 1/4) in algae and W('- 1/2) in zooplankton. Field tests of allometric models of radiophosphorus flow were conducted by following the redistribution of radioactivity among 11 size fractions of enclosed epilimnetic assemblages over 5 to 6 days. Concentration of the tracer in the biomass declined with size soon after addition and gradually shifted to a uniform distribution within 3 days. A model that makes no a priori assumptions as to the trophic structure of the system, i.e. all size classes are at the same trophic level, predicted these dynamics better than one that assumes trophic position to increase with size. Further analyses indicated that explicit treatment of the physiological allometry and size distribution of broad functional groups of plankton are needed to improve the descriptive power of the model further.
|
106 |
Determination of alkyllead compounds and synthesis of alkyllead radiotracersBlais, Jean-Simon January 1987 (has links)
No description available.
|
107 |
Stable isotope tracers of landfill leachate impacts on aquatic systemsNorth, Jessica C., n/a January 2006 (has links)
The present study aimed to determine whether stable isotope techniques can be universally applied to detect landfill leachate contamination in aquatic systems. Results of analysis of ��C in dissolved inorganic carbon ([delta]��C-DIC), deuterium and �⁸O in water ([delta]D-H₂O and [delta]�⁸O-H₂O), and �⁵N of dissolved inorganic nitrogen components ([delta]�⁵N-NH₄⁺ and [delta]�⁵N-NO₃⁻) were presented for leachate, surface, and ground water samples collected from seven landfills located throughout New Zealand between 2003 and 2006. The unique conditions within a landfill lead to measurable fractionations in the isotopic ratios of the products of degradation. Results of isotope and ancillary parameter analyses enabled the discernment of different types of leachate, resulting from different microbial processes within the landfill environment. The isotopic characterisation of leachate enabled improved interpretation of geochemical data from potentially impacted surface and ground waters, and provides useful insight to landfill development for landfill operators. A general isotopic fingerprint delineated by [delta]��C-DIC and [delta]D-H₂O values showed leachate to be isotopically distinct from uncontaminated surface and ground water for samples analysed in the present study. However, not all water samples identified as leachate-impacted via site-specific assessments exhibited isotopic values that overlapped with the general leachate fingerprint. This highlights the need to investigate each site individually, within the context of a possibly global leachate isotope signature. Site-specific investigations revealed the effectiveness of applying [delta]�⁸O-H₂O and [delta]�⁵N-NH₄⁺ or [delta]�⁵N-NO₃⁻, in addition to [delta]��C-DIC and [delta]D-H₂O analyses, to the detection of leachate impact on aquatic systems. Furthermore, ancillary parameters such as alkalinity and ammonium concentration enabled the construction of simple isotope mixing models for an estimate of the quantity of leachate contribution. Results of isotopic investigations of stream biota suggested potential for the development of bio-indicators to monitor leachate influence on aquatic ecosystems in landfill-associated streams. The present study demonstrated the probative power of stable isotope techniques applied to investigations of leachate impact on landfill-associated aquatic systems.
|
108 |
Developing compound-specific stable isotope tools for monitoring landfill leachateBenbow, Timothy J, n/a January 2008 (has links)
This thesis has developed a suite of compound specific stable isotope tools to monitor landfill leachate and identify the infiltration of leachate to ground water and surface water. These tools have the power to indicate the fractional contribution multiple discrete sources of pollution are making to a single location. This journey began by developing two solid phase extraction (SPE) methods to extract non-polar and polar organic compounds from leachate with minimal fractionation of hydrogen or carbon isotopes. Non-polar compounds were successfully extracted using ENV+ SPE cartridges and polar compounds were successfully extracted using Strata-X SPE cartridges. The isotopic fractionation of non-polar compounds during ENV+ extraction varied significantly (up to 245⁰/₀₀ and 1.8⁰/₀₀ for D and ��C respectively, when eluted with acetonitrile and ethyl acetate, as recommended by manufacturers) but the fractionation of compounds eluted with dichloromethane was negligible (less than instrumental precision). Polar compounds were eluted from Strata-X cartridges with negligible isotopic fractionation using methanol. The direct comparison of SPE and liquid-liquid extraction found SPE to extract slightly more compound from leachate then liquid-liquid extraction (especially for polar compounds) and the isotopic compositions of compounds did not change with extraction methods.
These new analytical methods subsequently were used to determine the isotopic compositions of organic compounds dissolved in leachates from three New Zealand landfills. The molecular and isotopic signature of leachate varied significantly between landfills, indicating the isotopic fingerprint of organic compounds in leachate is unsuitable as a universal tracer of leachate. However, compounds such as terpien-4-ol, methylethylbenzene and juvabione maintained their isotopic composition over short geographical distance-indicating their potential as site-specific tracers of leachate. Organic compounds analysed on a transect across the landfill boundary indicated polar compounds were more mobile than semi-volatile compounds and possessed a more conservative isotopic composition. However, hexadecanoic acid extracted from leachate and ground water was highly depleted in ��C (-72 ⁰/₀₀ to -40⁰/₀₀), indicative of methanogenic and sulfate reducing bacteria. These bacteria only live in highly reducing environments such as leachate; therefore their presence in the pristine environment can potentially indicate the release of leachate from the landfill.
The final experiments traced the uptake and utilisation of leachate by periphyton. The isotopic composition of bulk periphyton, fatty acids and phytol indicated that microbial assimilation and utilisation of nutrients is a complex process. Fatty acid biomarkers for green algae and diatoms showed signs of leachate derived nutrients, however the availability of nutrients (carbon, nitrogen, water and light) caused significant changes in metabolic processes and isotopic compositions. Under slow growing conditions, the [delta]��C composition of periphyton became enriched in ��C as solar irradiation levels decreased (including shading by detritus and periphyton), while the [delta]D composition of fatty acid was controlled by the internal recycling of hydrogen. This study indicated the power of compound specific isotope analysis as a tool to detect the release of landfill leachate from a landfill, especially at locations with multiple potential sources of contaminants, and provides a sound platform for future research.
|
109 |
The effects of molecular diffusion on groundwater solute transport through fractured tuffWalter, Gary R. January 1985 (has links) (PDF)
Thesis (Ph. D. - Hydrology and Water Resources)--University of Arizona, 1985. / Includes bibliographical references (leaves 182-187).
|
110 |
A determination of air-sea gas exchange and upper ocean biological production from five noble gases and tritiugenic helium-3Stanley, Rachel H. R. January 2007 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007. / "September 2007". "Joint Program in Oceanography/Applied Ocean Science and Engineering"--Cover. Title from Web page (viewed on Mar. 24, 2008). Includes bibliographical references (p. 215-225).
|
Page generated in 0.0327 seconds