• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 113
  • 29
  • 15
  • 14
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 490
  • 149
  • 117
  • 105
  • 84
  • 77
  • 71
  • 59
  • 58
  • 56
  • 54
  • 50
  • 50
  • 45
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Terminal Connection And System Function For Making Sweep Frequency Response Measurements On Transformers

Saravanakumar, A 04 1900 (has links)
Sweep Frequency Response (SFR) measurement on a transformer is a low voltage, offline exercise. So, it virtually permits determination of any network or system function, by imposing any desired terminal condition for the nontested windings and terminals. The terminal conditions employed have significant influence on the achievable fault detection ability, and maximizing this ability should obviously be one of the main aims of frequency response measurements. Simply stated, this requirement translates to the ability to identify/measure as many natural frequencies as possible. However, there is a practical limitation that not all system functions can exhibit all natural frequencies. Hence, it is necessary to determine the most appropriate combination of terminal connection and system function for achieving this objective. The growing popularity of SFR measurements has led to a new IEEE Guide. This document (IEEE Std PC57.149TM/D1) on SFR measurement lists out most of the possible terminal connections and system functions, for both 1φ and 3φ transformers. Surprisingly, it does not identify and recommend any one of them as preferred for maximizing this objective. Initially, considering the high frequency equivalent circuit representation of a 1φ, twowinding transformer, system function for different terminal conditions were computed. Depending on the number of natural frequencies distinguishable in the amplitude frequency response of a system function, each measuring condition was ranked. Thus, it led to identification of the best configuration. Later, these findings were verified on an actual 1φ, two-winding transformer. However, 3φ transformers are quite different in construction compared to 1φ transformers. So, whether the same configuration would also be applicable for SFR measurements on 3φ transformers had to be ascertained. So, the study was next extended to 3φ transformers. Performance of best configuration identified during this investigation are compared with currently employed low-voltage impulse test (used during short-circuit testing of transformers) and currently practiced SFR measurement test conditions, and found to be better. In conclusion, it is believed that after adequate field verifications, the identified configuration can be declared as the preferred way of making SFR measurement on transformers.
52

A quantitative enzyme linked immunosorbent assay for polychlorinated biphenyls in transformer oil

Kim, In Soo January 2000 (has links)
No description available.
53

Serie injeksie as alternatief tot tapverstelbare transformators in EGAT kragverspreidingsnetwerke

14 October 2015 (has links)
M.Ing. (Electrical and Electronic Engineering) / Please refer to full text to view abstract
54

Design and development of a high efficiency modulated Class E amplifier

Crafford, Crafford, Hendrik Lambert Helberg Hendrik Lambert Helberg 01 1900 (has links)
M. Tech. (Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology / Amplitude modulation is not commonly associated with effective amplifying. This work focuses on implementing amplitude modulation into a high efficiency Class E amplifier. Different types of amplifiers are compared with each other, to show the advantages of using a Class E amplifier. The theory of the Class E amplifier is dealt with in detail. A harmonic filter is designed for the amplifier to make it radio spectrum friendly. The modulation process is implemented with the aid of a transformer into the Class E amplifier. The advantage of this is that the transformer serves both as a radio frequency choke for the Class E circuit as well as a modulator. The implementation of the amplitude modulation into the high efficient Class E circuit was successful. The final Class E circuit had superb efficiency, the harmonic filter showed good harmonic attenuation and the modulation process had low distortion. All this resulted in a fine low power AM transmitter.
55

Novel methods of transduction for active control of harmonic sound radiated by vibrating surfaces

Burgemeister, Kym A. January 1996 (has links)
Large electric transformers such as those used in high voltage substations radiate an annoying low frequency hum into nearby communities. Attempts have been made to actively control the noise by placing a large number of loudspeakers as control sources around noisy transformers to cancel the hum. These cancellation systems require a large number of loudspeakers to be successful due to the imposing size of the transformer structures. Thus such systems are very expensive if global noise reduction is to be achieved. The aim of this thesis is to investigate theoretically and experimentally the use of thin perforated panels closely placed to a heavy structure to reduce the radiation of unwanted harmonic noise. These panels can themselves be vibrated to form a control source radiating over a large surface surrounding the primary source. The problem of the equipment overheating inside the enclosure is alleviated because the holes in the panels still allow natural cooling. An initial study is carried out to determine the resonance frequencies of perforated panels. The use of previously determined effective elastic properties of the panels and Finite Element Analysis to theoretically calculate their resonance frequencies is examined. Secondly the attenuation provided by active noise control using perforated panels as control sources is explored by use of a coupled analysis, where the primary source is assumed to influence the radiation of the perforated control panel. This analysis was found to predict poorly the amount of attenuation that could be achieved, so an uncoupled analysis is undertaken, where both the primary and control sources are assumed to radiate independently of each other. Not only does this greatly simplify the theoretical analysis but it also enables prediction of attenuation levels which are comparable to those determined experimentally. The theoretical model is reformulated to enable comparison of the sound power attenuation provided by perforated panel control sources with that of traditional acoustic and structural control sources. Finally, the use of modal filtering of traditional acoustic error sensor signals to give transformed mode (or power mode) sensors is examined. The independently radiating acoustic transformed modes of the panel are determined by an eigenanalysis and a theoretical analysis is presented for a farfield acoustic power sensor system to provide a direct measurement of the total radiated acoustic power. The frequency dependence of the sensor system, and the amount of global sound power attenuation that can be achieved is examined. Experimental measurements are made to verify the theoretical model and show that a sound power sensor implemented with acoustic sensors can be used in a practical active noise control system to increase the amount of attenuation that can be achieved. Alternatively the sound power sensor can be used to reduce the number of error channels required by a control system to obtain a given level of attenuation when compared to traditional error criteria. The power mode sensor analysis is then applied to the perforated panel control system, with similar results. / Thesis (Ph.D.)--Engineering (Department of Mechanical Engineering), 1996.
56

Condition monitoring of transformers : the acoustic method.

20 October 2010 (has links)
Partial discharges (p.d.'s) are a major source of the progressive deterioration of insulation in / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2007.
57

Theoretical and experimental study of wave forms of transformer supplying mercury-arc rectifier

Brown, Hugh Austin 12 1900 (has links)
No description available.
58

Loss compensation of transformer models for the power system simulator

Guzman, Nelson Jose. January 1984 (has links)
No description available.
59

Novel methods of transduction for active control of harmonic sound radiated by vibrating surfaces

Burgemeister, Kym A. January 1996 (has links)
Large electric transformers such as those used in high voltage substations radiate an annoying low frequency hum into nearby communities. Attempts have been made to actively control the noise by placing a large number of loudspeakers as control sources around noisy transformers to cancel the hum. These cancellation systems require a large number of loudspeakers to be successful due to the imposing size of the transformer structures. Thus such systems are very expensive if global noise reduction is to be achieved. The aim of this thesis is to investigate theoretically and experimentally the use of thin perforated panels closely placed to a heavy structure to reduce the radiation of unwanted harmonic noise. These panels can themselves be vibrated to form a control source radiating over a large surface surrounding the primary source. The problem of the equipment overheating inside the enclosure is alleviated because the holes in the panels still allow natural cooling. An initial study is carried out to determine the resonance frequencies of perforated panels. The use of previously determined effective elastic properties of the panels and Finite Element Analysis to theoretically calculate their resonance frequencies is examined. Secondly the attenuation provided by active noise control using perforated panels as control sources is explored by use of a coupled analysis, where the primary source is assumed to influence the radiation of the perforated control panel. This analysis was found to predict poorly the amount of attenuation that could be achieved, so an uncoupled analysis is undertaken, where both the primary and control sources are assumed to radiate independently of each other. Not only does this greatly simplify the theoretical analysis but it also enables prediction of attenuation levels which are comparable to those determined experimentally. The theoretical model is reformulated to enable comparison of the sound power attenuation provided by perforated panel control sources with that of traditional acoustic and structural control sources. Finally, the use of modal filtering of traditional acoustic error sensor signals to give transformed mode (or power mode) sensors is examined. The independently radiating acoustic transformed modes of the panel are determined by an eigenanalysis and a theoretical analysis is presented for a farfield acoustic power sensor system to provide a direct measurement of the total radiated acoustic power. The frequency dependence of the sensor system, and the amount of global sound power attenuation that can be achieved is examined. Experimental measurements are made to verify the theoretical model and show that a sound power sensor implemented with acoustic sensors can be used in a practical active noise control system to increase the amount of attenuation that can be achieved. Alternatively the sound power sensor can be used to reduce the number of error channels required by a control system to obtain a given level of attenuation when compared to traditional error criteria. The power mode sensor analysis is then applied to the perforated panel control system, with similar results. / Thesis (Ph.D.)--Engineering (Department of Mechanical Engineering), 1996.
60

Novel methods of transduction for active control of harmonic sound radiated by vibrating surfaces

Burgemeister, Kym A. January 1996 (has links)
Large electric transformers such as those used in high voltage substations radiate an annoying low frequency hum into nearby communities. Attempts have been made to actively control the noise by placing a large number of loudspeakers as control sources around noisy transformers to cancel the hum. These cancellation systems require a large number of loudspeakers to be successful due to the imposing size of the transformer structures. Thus such systems are very expensive if global noise reduction is to be achieved. The aim of this thesis is to investigate theoretically and experimentally the use of thin perforated panels closely placed to a heavy structure to reduce the radiation of unwanted harmonic noise. These panels can themselves be vibrated to form a control source radiating over a large surface surrounding the primary source. The problem of the equipment overheating inside the enclosure is alleviated because the holes in the panels still allow natural cooling. An initial study is carried out to determine the resonance frequencies of perforated panels. The use of previously determined effective elastic properties of the panels and Finite Element Analysis to theoretically calculate their resonance frequencies is examined. Secondly the attenuation provided by active noise control using perforated panels as control sources is explored by use of a coupled analysis, where the primary source is assumed to influence the radiation of the perforated control panel. This analysis was found to predict poorly the amount of attenuation that could be achieved, so an uncoupled analysis is undertaken, where both the primary and control sources are assumed to radiate independently of each other. Not only does this greatly simplify the theoretical analysis but it also enables prediction of attenuation levels which are comparable to those determined experimentally. The theoretical model is reformulated to enable comparison of the sound power attenuation provided by perforated panel control sources with that of traditional acoustic and structural control sources. Finally, the use of modal filtering of traditional acoustic error sensor signals to give transformed mode (or power mode) sensors is examined. The independently radiating acoustic transformed modes of the panel are determined by an eigenanalysis and a theoretical analysis is presented for a farfield acoustic power sensor system to provide a direct measurement of the total radiated acoustic power. The frequency dependence of the sensor system, and the amount of global sound power attenuation that can be achieved is examined. Experimental measurements are made to verify the theoretical model and show that a sound power sensor implemented with acoustic sensors can be used in a practical active noise control system to increase the amount of attenuation that can be achieved. Alternatively the sound power sensor can be used to reduce the number of error channels required by a control system to obtain a given level of attenuation when compared to traditional error criteria. The power mode sensor analysis is then applied to the perforated panel control system, with similar results. / Thesis (Ph.D.)--Engineering (Department of Mechanical Engineering), 1996.

Page generated in 0.026 seconds