31 |
Effect of Inlet Temperature Non-Uniformity on High-Pressure Turbine PerformanceSmith, Craig I. 01 November 2010 (has links)
The temperature of the flow entering a high-pressure turbine stage is inherently non-uniform, as it is produced by several discrete, azimuthally-distributed combustors. In general, however, industrial simulations assume inlet temperature uniformity to simplify the preparation process and reduce computation time. The effects of a non-uniform inlet field on the performance of a commercial, transonic, single-stage, high-pressure, axial turbine with a curved inlet duct have been investigated numerically by performing URANS (Unsteady Reynolds-Averaged Navier-Stokes equations) simulations with the SST (Shear Stress Transport) turbulence model. By adjusting the alignment of the experimentally-based inlet temperature field with respect to the stator vanes, two clocking configurations were generated: a vane-impinging (VI) case , in which each hot streak impinged on a vane; and a mid-pitch (MP) case, in which each hot streak passed between two vanes.
In the VI configuration, the hot streaks produced higher time-averaged heat load on the vanes and lower heat load on the blades. As the hot streaks in the VI case passed over the stator vanes, they also spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. The hot streaks in the MP case were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the MP configuration. The non-uniformity of the time-averaged enthalpy on the blade surfaces was lower in the VI configuration. The flow exiting the rotor section was much less non-uniform in the VI case, but differences in calculated efficiency were not significant. / Pratt & Whitney Canada, NSERC
|
32 |
Installation of a new hydropower plant : in Ockelbo SwedenRaurell Font, Albert, Reales Ferreres, Xavier January 2010 (has links)
The project consists on the reconstruction of an old and obsolete hydropower plant situated in Ockelbo (Sweden). To carry out this goal it is done firstly a land survey on the place and a preliminary study of which kind of plant should be installed. After that it is done the management part of the project, summarized in the three documents called Business Case, Project Directive and Project Specification. These papers must be written before start running any project. Before start writing the real project, it is explained a short background of hydropower plants and all their components, the current situation of the site studied and also the status of this green energy in Sweden. The name of the site where it is going to be placed the hydropower plant is Wij Trädgårdar and they want to make this area as an example of sustainability with different kind of green energy production. Any project must have a pre-study to assure that the task is possible. The theoretical part explains this pre-study, looking at the best turbine and generator with the conditions given by the land survey. This part also gives an overview of the importance to manage a project, how to do it and people who take part on it. Finally, on the part of the results, the theoretical installation that should be placed with its specifications is defined and also the amount of energy that it can produce. In addition, on the management part, there is concluded how to erect the new installation with the final solution given and those suppliers that will participate on the construction. Also, an economical study is included. The three management documents are added on the appendixes.
|
33 |
Design of PM generator for avertical axis wind turbineRynkiewicz, Mateusz January 2012 (has links)
The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed of 10m/s. The project is conducted at theDivision of Electricity at Uppsala University with collaboration from ElectricGeneration AB. The design has just a few moving parts, which decreases maintenancecosts and increases its toughness. The turbine absorbs wind from every direction butits rotation speed ratio is lower than horizontal axis wind turbines. It means that thegenerator must be bigger and therefore more expensive. Price is an importantcriterion for the generator. Neodymium magnets are expensive so the amount of thismaterial must be limited.Several designs have been simulated but one final design has proven the mostpromising. It fulfills all specifications such as efficiency above 95%, 20kW outputpower and it also has a relatively low amount of hard magnetic material.A design with a single row of cables per slot was decided upon to eliminate heatpockets between cable rows, which can occur in designs with two cable rows perslot. It would be interesting to study designs with two or more cable rows per slot, asit could lead to a smaller and more efficient machine.
|
34 |
Assessment of Reliablity Against Corrision Fatigue Failure for Low Pressure Turbine Blades under Unbanlanced Power System OperationChen, Wen-Chih 27 June 2000 (has links)
Usually, a large steam turbine-generator unit has itself a blade vibration mode that is close to its double electrical frequency. This mode of vibration will easily be excited by electrical load unbalance, thereby the turbine blades will be affected by this kind of vibrations, especially for the last three rows of blades. In fact, turbine generators operate in corrosive environment and undergo the statistical stress impact due to the randomly unbalanced currents. In this paper, the blades are subjected to corrosion fatigue, thereby small stress still may cause damage significantly. On the other hand, the damage caused by system unbalance is so small that people could neglect it usually. Nevertheless, for the long-term operation with lasting system unbalance, its influence on reliability may no longer be omitted.
According to the gamma distribution in unbalanced negative phase current (I2), the probability level of fatigue life, the reliability against fatigue failure and crack growth of turbine blades are evaluated for three turbine-generator system in the paper. The blades with various materials, safety factors and stress concentration factors are considered in the simulations. The influence of extreme value distribution of I2 to the reliability is also investigated. According to the results, we have reason to believe that corrosion fatigue is one of causes that led to crack initiation or damage of blades under normal operation.
|
35 |
Aspect ratio effect on heat transfer in rotating two-pass rectangular channels with smooth walls and ribbed wallsFu, Wen-Lung 29 August 2005 (has links)
This study experimentally investigates the effects of rotation, the buoyancy force,
and the channel aspect ratio on heat transfer in two-pass rotating rectangular channels.
The experiments are conducted with two surface conditions: smooth walls and 45??
angled ribbed walls. The channel aspect ratios include 4:1, 2:1, 1:1, 1:2 and 1:4. Four
Reynolds numbers are studied: 5000, 10000, 25000 and 40000. The rotation speed is
fixed at 550 rpm for all tests, and for each channel, two channel orientations are studied:
90?? and 45?? or 135??, with respect to the plane of rotation. Rib turbulators are placed on
the leading and trailing walls of the channels at an angle of 45?? to the flow direction. The
ribs have a 1.59 by 1.59 mm square cross section, and the rib pitch-to-height ratio (P/e)
is 10 for all tests.
The effects of the local buoyancy parameter and channel aspect ratio on the
regional Nusselt number ratio are presented. Pressure drop data are also measured for
both smooth and ribbed channels in rotating and non-rotating conditions. The results
show that increasing the local buoyancy parameter increases the Nusselt number ratio on
the trailing surface and decreases the Nusselt number ratio on the leading surface in the
first pass for all channels. However, the trend of the Nusselt number ratio in the second
pass is more complicated due to the strong effect of the 180?? turn. Results are also
presented for this critical turn region of the two-pass channels. In addition to these
regions, the channel averaged heat transfer, friction factor, and thermal performance are
determined for each channel. With the channels having comparable Nusselt number
ratios, the 1:4 channel has the superior thermal performance because it incurs the least
pressure penalty. In this study, the author is able to systematically analyze, correlate, and
conclude the thermal performance comparison with the combination of rotation effects
on five different aspect ratio channels with both smooth walls and rib turbulated walls.
|
36 |
Turbulence and three-dimensional effects on a film cooled turbine vane /Cutbirth, James Michael, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 422-428). Available also in a digital version from Dissertation Abstracts.
|
37 |
Optimal control for a modern wind turbine systemYan, Zeyu, master of science in engineering 26 July 2012 (has links)
Wind energy is the most abundant resource in the renewable energy portfolio. Increasing the wind capture capability improves the economic viability of this technology, and makes it more competitive with traditional fossil-fuel based supplies. Therefore, it is necessary to explore control strategies that maximize aerodynamic efficiency, thus, the wind energy capture. Several control algorithms are developed and compared during this research. A traditional feedback control is adapted as the benchmark approach, where the turbine torque and the blade pitch angle are used to control the wind turbine operation during partial and full load operations, correspondingly. Augmented feedback control algorithms are then developed to improve the wind energy harvesting. Optimal control methodologies are extensively explored to achieve maximal wind energy capture. Numerical optimization techniques, such as direct shooting optimization are employed. The direct shooting method convert the optimal control problem into a parameter optimization problem and use nonlinear programming algorithm to find the optimal solution. The dynamic programming, a global optimization approach over a time horizon, is also investigated. The dynamic programming finds the control inputs for the blade pitch angle and speed ratio to maximize the power coefficient, based on historical wind data. A dynamic wind turbine model has been developed to facilitate this process by characterizing the performance of the various possible input scenarios. Simulation results of each algorithm on real wind site data are presented to compare the wind energy capture under the proposed control algorithms with the traditional feedback control design. The result of the tradeoff analysis between the computation expense and the energy capture is also reported. / text
|
38 |
Radar signature characterization from wind turbine scatteringNaqvi, Aale R. 25 June 2014 (has links)
The growth in the number of wind farms has raised significant concerns in the radar community due to their potential interference on radar systems. The motion of the turbine blades creates unwanted Doppler clutter that can interfere in the tracking of moving targets. Large turbine structures can also produce electromagnetic shadows that may make observing objects behind a wind farm difficult. Detailed characterization of the clutter is the first step towards effective mitigation techniques. The goal of this dissertation research is to gain a better understanding of the dynamic radar signatures resulting from scattering by wind turbines. First, the scattering characteristics of turbines in the presence of ground surface are studied. Image theory in conjunction with a shooting-and-bouncing ray code, Ahilo, is used to carry out the dynamic signature simulation. The observed features in the simulation are corroborated with laboratory model measurements. Second, the effects of higher order motions of a turbine undergoing rotation on the radar signatures are investigated and characterized. Mathematical models for the motions are proposed and used to simulate the joint time-frequency and inverse synthetic aperture radar characteristics of the turbine undergoing these motions. The motions are studied for an isolated turbine as well as for a turbine rotating above a ground. Selected motions are corroborated by laboratory model measurements. Next, a method to remove the dynamic clutter produced by wind turbines is presented. A physics-based basis is constructed to model the radar backscattering from a wind turbine. This basis is used in conjunction with the matching pursuit algorithm to iteratively remove the Doppler clutter due to wind turbines. The algorithm is tested using radar return generated using Ahilo. Finally, radar features of wind turbines are simulated and studied in the HF (high frequency) band. The features are presented in the range-Doppler plane for single as well as arrays of turbines. Doppler aliasing due to the limited pulse repetition frequency of HF radars is examined. Shadowing characteristics of arrays of turbines are simulated and analyzed. Electromagnetic modeling details including effects of thin-wire modeling, non-conducting turbine components, and the presence of a conducting ground surface are discussed. / text
|
39 |
Mixing in a tank stirred by a Rushton turbine at a low clearanceOchieng, A, Onyango, MS, Kumar, A, Kiriamiti, K, Musonge, P January 2008 (has links)
Mixing efficiency in stirred tanks is an important consideration in the design of many industrial processes. Computational fluid dynamics (CFD)
techniques have been employed in the present work to study the hydrodynamics in a tank stirred by a Rushton turbine. The effect of the impeller
clearance on the velocity field and mixing has been investigated. It has been shown that at a low impeller clearance, the Rushton turbine generates
a flow field that evolves from the typical two loops to a single loop flow pattern similar to that of an axial impeller. This single loop flow pattern
resulted in an increase in axial flow and a decrease in mixing time at a constant power number. It has been found that a draft tube can be used with
a single Rushton turbine, at a low clearance to aid axial flow and mixing, and this resulted in 50% reduction in mixing time. There was a good
comparison between laser Doppler velocimetry (LDV) experimental and CFD simulation flow fields, both of which showed that the draft tube
improved mixing in the tank by suppressing secondary circulation loops.
|
40 |
Economic aspects of supplying electric power with gas turbine generatorsCroft, Walter Hughes, 1908- January 1956 (has links)
No description available.
|
Page generated in 0.2104 seconds