• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 22
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 34
  • 34
  • 29
  • 28
  • 21
  • 19
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Impact of the chemical description on direct numerical simulations and large eddy simulations of turbulent combustion in industrial aero-engines / Impact de la description chimique dans une simulation numérique directe et une simulation aux grandes échelles de la combustion turbulente dans des foyers aéronautiques

Franzelli, Benedetta Giulia 19 September 2011 (has links)
Le développement de nouvelles technologies pour le transport aérien moins polluant est de plus en plus basé sur la simulation numérique, qui nécessite alors une description fiable de la chimie. Pour la plupart des carburants, la description de la combustion nécessite des mécanismes détaillés mais leur utilisation dans une simulation numérique de combustion turbulente est limitée par le coût calcul. Des mécanismes cinétiques réduits et des méthodes de tabulation ont été proposés pour surmonter ce problème. Ces descriptions chimiques simplifiées ayant été développées dans le cadre de configurations laminaires, cette thèse propose de les évaluer dans des configurations turbulentes: une DNS de flamme prémélangée méthane/air de type Bunsen et une LES d’un brûleur expérimental. Les mécanismes sont analysés en termes de structure de flamme, paramètres de flamme globaux, longuer de flamme, prediction des concentrations en espèces majoritaires et des émissions polluantes. Une méthodologie pour évaluer a priori la capacité d’un mécanisme à prédire correctement des phénomènes chimiques tridimensionnels est proposée en se basant sur les résultats de flammes laminaires monodimensionnelles non étirées et étirées. Il ressort que, d’une part, pour construire un mécanisme réduit, il est nécessaire de faire un compromis entre coût calcul, robustesse et qualité des résultats. D’autre part, la qualité des résultats de DNS et LES de configurations tridimensionnelles turbulentes peut être anticipée par une analyse du comportement des schémas réduits dans des configurations simplifiées de flammes monodimensionnelles laminaires non étirées et étirées. / A growing need for numerical simulations based on reliable chemistries has been observed in the last years in order to develop new technologies which could guarantee the reduction of the enviromental impact on air transport. The description of combustion requires the use of detailed kinetic mechanisms for most hydro-carbons. Their use in turbulent combustion simulation is still prohibitive because of their high computational cost. Reduced chemistries and tabulation methods have been proposed to over-come this problem. Since all these reductions have been developed for laminar configurations, this thesis proposes to evaluate their performances in simulations of turbulent configurations such as a DNS of a premixed Bunsen methane/air flame and a LES of an experimental PREC-CINSTA burner. The mechanisms are analysed in terms of flame structure, global burning parameters, flame length, prediction of major species concentrations and pollutant emissions. An a priori methodology based on one-dimensional unstrained and strained laminar flames to evaluate the mechanism capability to predict three-dimensional turbulent flame features is therefore proposed. On the one hand when building a new reduced scheme, its requirements should be fixed compromising the computational cost, the robustness of the chemical description and the desired quality of results. On the other hand, the quality of DNS or LES results in three-dimensional configurations could be anticipated testing the reduced mechanism on laminar one-dimensional premixed unstrained and strained flames.
52

LES of two-phase reacting flows : stationary and transient operating conditions / Simulations aux grandes échelles découlements diphasiques réactifs : régimes stationnaires et transitoires

Eyssartier, Alexandre 05 October 2012 (has links)
L'allumage et le réallumage de haute altitude présentent de grandes difficultés dans le cadre des chambres de combustion aéronautiques. Le succès d'un allumage dépend de multiples facteurs, des caractéristiques de l'allumeur à la taille des gouttes du spray en passant par le niveau de turbulence au point d'allumage. Déterminer la position optimale de l'allumeur ou le potentiel d'allumage d'une source d'énergie donnée à une position donnée sont ainsi des paramètres essentiels lors du design de chambre de combustion. Le but de ces travaux de thèse est d'étudier l'allumage forcé des chambres de combustion aéronautiques. Pour cela, des Simulation numériques aux Grandes Echelles (SGE) d'écoulements diphasiques réactifs sont utilisées et analysées. Afin de les valider, des données expérimentales issues du banc MERCATO installé à l'ONERA Fauga-Mauzac sont utilisées. Cela permet dans un premier temps de valider la méthodologie ainsi que les modèles utilisés pour les SGE diphasiques évaporantes avant leur utilisation dans d'autres conditions d'écoulement. Le cas diphasique réactif statistiquement stationnaire est ensuite comparé aux données disponibles pour évaluer les modèles en condition réactives. Ce cas est étudié plus en détail à travers l'analyse de caractéristiques de la flamme. Celle-ci semble être le théâtre de régimes de combustion très différents. On note aussi que la détermination de la méthode numérique la plus appropriée pour le calcul d'écoulements diphasiques n'est pas évidente. De plus, deux méthodes numériques différentes peuvent donner des résultats en bon accord avec l'expérience et pourtant avoir des modes de combustion différents. Les capacités de la SGE à correctement calculer un écoulement diphasique réactif étant validé, des SGE du phénomène transitoire d'allumage sont effectuées. La sensibilité observée expérimentalement de l'allumage aux conditions initiales, i.e. à l'instant de claquage, est retrouvé par les SGE. L'analyse met en évidence le rôle prépondérant de la dispersion du spray dans le développement initial du noyau de flamme. L'utilisation des SGE pour calculer les séquences d'allumage fournie de nombreuses informations sur le phénomène d'allumage, cependant d'un point de vue industriel, cela ne donne pas de résultat optimal, à moins de ne tester toutes les positions, ce qui rendrait le coût CPU déraisonnable. Des alternatives sont donc nécessaires et font l'objet de la dernière partie de ces travaux. On propose de dériver un critère local d'allumage, donnant la probabilité d'allumage à partir d'un écoulement diphasique (air et carburant) non réactif instationnaire. Ce modèle est basé sur des critères liés aux différentes phases menant à un allumage réussi, de la formation d'un premier noyau à la propagation de la flamme vers l'injecteur. Enfin, des comparaisons avec des données expérimentales sur des chambres aéronautiques sont présentées et sont en bon accord, indiquant que le critère d'allumage proposé, couplé avec une SGE d'écoulement diphasique non réactif, peut être utilisé pour optimiser la puissance et la position du système d'allumage. / Ignition and altitude reignition are critical issues for aeronautical combustion chambers. The success of ignition depends on multiple factors, from the characteristics of the igniter to the spray droplet size or the level of turbulence at the ignition site. Finding the optimal location of the igniter or the potential of ignition success of a given energy source at a given location are therefore parameters of primary importance in the design of combustion chambers. The purpose of this thesis is to study forced ignition of aeronautical combustion chambers. To do so, Large Eddy Simulations (LES) of two-phase reacting flows are performed and analyzed. First, the equations of the Eulerian formalism used to describe the dispersed phase are presented. To validate the successive LES, experimental data from the MERCATO bench installed at ONERA Fauga-Mauzac are used. It allows to validate the two-phase evaporating flow LES methodology and models prior to its use to other flow conditions. The statistically stationary two-phase flow reacting case is then compared to available data to evaluate the model in reacting conditions. This case is more deeply studied through the analysis of the characteristics of the flame. This last one appears to experience very different combustion regimes. It is also seen that the determination of the most appropriate methodology to compute two-phase flow flame is not obvious. Furthermore, two different methodologies may both agree with the data and still have different burning modes. The ability of the LES to correctly compute burning two-phase flow being validated, LES of the transient ignition phenomena are performed. The experimentally observed sensitivity of ignition to initial conditions, i.e. to sparking time, is recovered with LES. The analysis highlights the major role played by the spray dispersion in the development of the initial flame kernel. The use of LES to compute ignition sequences provides a lot of information about the ignition phenomena, however from an industrial point of view, it does not give an optimal result, unless all locations are tested, which brings the CPU cost to unreasonable values. Alternatives are hence needed and are the objective of the last part of this work. It is proposed to derive a local ignition criterion, giving the probability of ignition from the knowledge of the unsteady non-reacting two-phase (air and fuel) flow. This model is based on criteria for the phases of a successful ignition process, from the first kernel formation to the flame propagation towards the injector. Then, comparisons with experimental data on aeronautical chambers are done and show good agreement, indicating that the proposed ignition criterion, coupled to a Large Eddy Simulation of the stationary evaporating two-phase non-reacting flow, can be used to optimize the igniter location and power.
53

Multi-regime Turbulent Combustion Modeling using Large Eddy Simulation/ Probability Density Function

Shashank Satyanarayana Kashyap (6945575) 14 August 2019 (has links)
Combustion research is at the forefront of development of clean and efficient IC engines, gas turbines, rocket propulsion systems etc. With the advent of faster computers and parallel programming, computational studies of turbulent combustion is increasing rapidly. Many turbulent combustion models have been previously developed based on certain underlying assumptions. One of the major assumptions of the models is the regime it can be used for: either premixed or non-premixed combustion. However in reality, combustion systems are multi-regime in nature, i.e.,\ co-existence of premixed and non-premixed modes. Thus, there is a need for development of multi-regime combustion models which closely follows the physics of combustion phenomena. Much of previous modeling efforts for multi-regime combustion was done using flamelet-type models. As a first, the current study uses the highly robust transported Probability Density Function (PDF) method coupled with Large Eddy Simulation (LES) to develop a multi-regime model. The model performance is tested for Sydney Flame L, a piloted methane-air turbulent flame. The concept of flame index is used to detect the extent of premixed and non-premixed combustion modes. The drawbacks of using the traditional flame index definition in the context of PDF method are identified. Necessary refinements to this definition, which are based on the species gradient magnitudes, are proposed for the multi-regime model development. This results in identifying a new model parameter beta which defines a gradient threshold for the calculation of flame index. A parametric study is done to determine a suitable value for beta, using which the multi-regime model performance is assessed for Flame L by comparing it against the widely used non-premixed PDF model for three mixing models: Modified Curl (MCurl), Interaction by Exchange with Mean (IEM) and Euclidean Minimum Spanning Trees (EMST). The multi-regime model shows a significant improvement in prediction of mean scalar quantities compared to the non-premixed PDF model when MCurl mixing model is used. Similar improvements are observed in the multi-regime model when IEM and EMST mixing models are used. The results show potential foundation for further multi-regime model development using PDF model.
54

Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines

Potier, Luc 24 May 2018 (has links) (PDF)
Combustion in cryogenic engines is a complex phenomenon, involving either liquid or supercritical fluids at high pressure, strong and fast oxidation chemistry, and high turbulence intensity. Due to extreme operating conditions, a particularly critical issue in rocket engine is wall heat transfer which requires efficient cooling of the combustor walls. The concern goes beyond material resistance: heat fluxes extracted through the chamber walls may be reused to reduce ergol mass or increase the power of the engine. In expander-type engine cycle, this is even more important since the heat extracted by the cooling system is used to drive the turbo-pumps that feed the chamber in fuel and oxidizer. The design of rocket combustors requires therefore an accurate prediction of wall heat flux. To understand and control the physics at play in such combustor, the Large Eddy Simulation (LES) approach is an efficient and reliable numerical tool. In this thesis work, the objective is to predict wall fluxes in a subcritical rocket engine configuration by means of LES. In such condition, ergols may be in their liquid state and it is necessary to model liquid jet atomization, dispersion and evaporation.The physics that have to be treated in such engine are: highly turbulent reactive flow, liquid jet atomization, fast and strong kinetic chemistry and finally important wall heat fluxes. This work first focuses on several modeling aspects that are needed to perform the target simulations. H2/O2 flames are driven by a very fast chemistry, modeled with a reduced mechanism validated on academic configurations for a large range of operating conditions in laminar pre- mixed and non-premixed flames. To form the spray issued from the atomization of liquid oxygen (LOx) an injection model is proposed based on empirical correlations. Finally, a wall law is employed to recover the wall fluxes without resolving directly the boundary layer. It has been specifically developed for important temperature gradients at the wall and validated on turbulent channel configurations by comparison with wall resolved LES. The above models are then applied first to the simulation of the CONFORTH sub-scale thrust chamber. This configuration studied on the MASCOTTE test facility (ONERA) has been measured in terms of wall temperature and heat flux. The LES shows a good agreement compared to experiment, which demonstrates the capability of LES to predict heat fluxes in rocket combustion chambers. Finally, the JAXA experiment conducted at JAXA/Kakuda space center to observe heat transfer enhancement brought by longitudinal ribs along the chamber inner walls is also simulated with the same methodology. Temperature and wall fluxes measured with smooth walls and ribbed walls are well recovered by LES. This confirms that the LES methodology proposed in this work is able to handle wall fluxes in complex geometries for rocket operating conditions.
55

Direct quadrature conditional moment closure for turbulent non-premixed combustion

Ali, Shaukat January 2014 (has links)
The accurate description of the turbulence chemistry interactions that can determine chemical conversion rates and flame stability in turbulent combustion modelling is a challenging research area. This thesis presents the development and implementation of a model for the treatment of fluctuations around the conditional mean (i.e., the auto-ignition and extinction phenomenon) of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software. The wider objective is to apply the model to advanced combustion modelling and extend the present analysis to larger hydrocarbon fuels and particularly focus on the ability of the model to capture the effects of particulate formation such as soot. A comprehensive approach for modelling of turbulent combustion is developed in this work. A direct quadrature conditional moment closure (DQCMC) method for the treatment of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software is described. The method which is based on the direct quadrature method of moments (DQMOM) coupled with the Conditional Moment Closure (CMC) equations is in simplified form and easily implementable in existing CMC formulation for CFD code. The observed fluctuations of scalar dissipation around the conditional mean values are captured by the treatment of a set of mixing environments, each with its pre-defined weight. In the DQCMC method the resulting equations are similar to that of the first-order CMC, and the “diffusion in the mixture fraction space” term is strictly positive and no correction factors are used. Results have been presented for two mixing environments, where the resulting matrices of the DQCMC can be inverted analytically. Initially the DQCMC is tested for a simple hydrogen flame using a multi species chemical scheme containing nine species. The effects of the fluctuations around the conditional means are captured qualitatively and the predicted results are in very good agreement with observed trends from direct numerical simulations (DNS). To extend the analysis further and validate the model for larger hydrocarbon fuel, the simulations have been performed for n-heptane flame using detailed multi species chemical scheme containing 67 species. The hydrocarbon fuel showed improved results in comparison to the simple hydrogen flame. It suggests that higher hydrocarbons are more sensitive to local scalar dissipation rate and the fluctuations around the conditional means than the hydrogen. Finally, the DQCMC is coupled with a semi-empirical soot model to study the effects of particulate formation such as soot. The modelling results show to predict qualitatively the trends from DNS and are in very good agreement with available experimental data from a shock tube concerning ignition delays time. Furthermore, the findings suggest that the DQCMC approach is a promising framework for soot modelling.
56

Numerical study of ignition and inter-sector flame propagation in gas turbine / Étude numérique de l'allumage et de la propagation inter-secteur dans les turbines à gaz

Esclapez, Lucas 22 May 2015 (has links)
Pour des raisons de sécurité, les moteurs aéronautiques doivent pouvoir redémarrer en vol sur toute leur plage d'opération. Mais les contraintes sur les émissions polluantes nécessitent le développement de nouvelles chambres de combustion dont la conception peut détériorer les capacités d'allumage du moteur. Afin d'améliorer la compréhension du processus d'allumage et d'aider à l'optimisation de la conception, les recherches actuelles combinent les études expérimentales de plus en plus complexes et les simulation numériques hautes fidélités. Dans ce travail, l'étude numérique du processus d'allumage des chambres de combustion aéronautiques, de l'étincelle à la propagation azimutale de la flamme, est conduite avec plusieurs objectifs: améliorer la robustesse et la confiance de l'outil LES pour l'étude de l'allumage, étudier les mécanismes qui affectent l'allumage dans des conditions représentatives des conditions réelles et enfin améliorer les méthodes bas-ordre pour la prédiction des performances d'allumage. Dans une première partie, la SGE d'un monobruleur installé au CORIA permet de mettre en évidence les bons résultats de la LES et de construire une base de données pour l'analyses des mécanismes d'extinction. Ces données sont aussi utilisées pour développer une méthodologie permettant de prédire les performances d'allumage à bas coût en utilisant les résultats d'une SGE non-réactive. Dans une seconde partie, la propagation inter-secteur est investiguée par l'étude de deux cas expérimentaux et la SGE est capable de reproduire les modes de propagation mais aussi les temps d'allumage avec précision. Sur la bases de ces bons résultats, une analyse plus fine de la simulation permet d'identifier les mécanismes qui contrôlent la propagation de la flamme. / For safety reasons, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To improve the knowledge of the ignition process in aeronautical gas turbines and better combine conflicting technological solutions, current research relies on both complex experimental investigation and high fidelity numerical simulations. In this work, numerical study of the ignition process in gas turbines from the energy deposit to the light-around is performed with several objectives: increase the level of confidence of Large Eddy Simulations tool for the analysis of the ignition process, investigate the mechanisms controlling ignition in conditions representative of realistic aeronautical gas turbine flows and improve the low-order methodologies for the prediction of ignition performance. In a first part, LES of the single burner installed at CORIA (France) is carried out and allows to highlight the LES accuracy and to build a database on which the main mechanisms controlling the ignition success are identified. Based on these results, a methodology is developed to predict the ignition performance at a low computational cost using the non-reacting flow statistics only. In a second part, the light-around process is studied on two experimental set-ups and the very good agreement of the LES results with experiments is the starting point from an analysis of the mechanisms driving the flame propagation process.
57

Étude de la stabilisation des flammes et des comportements transitoires dans un brûleur étagé à combustible liquide à l'aide de diagnostics rapides / High-speed diagnostics for the study of flame stabilization and transient behaviour in a swirled burner with variable liquid-fuel distribution

Renaud, Antoine 07 December 2015 (has links)
La combustion prévaporisée prémélangée pauvre est une piste de choix pour réduire les émissions polluantes des moteurs d'avions mais peut conduire à l'apparition d'instabilités thermo-acoustiques. Afin d'améliorer la stabilité de telles flammes, l'étagement du combustible consiste à contrôler la distribution spatiale du carburant. Une telle procédure s'accompagne cependant d'une complexité accrue du système pouvant déboucher sur des phénomènes inattendus.Un brûleur à l'échelle de laboratoire alimenté par du dodécane liquide est utilisé dans cette thèse. Le combustible est injecté dans deux étages séparés, permettant ainsi de contrôler sa distribution. Cette particularité permet l'observation de différentes formes de flammes et notamment de points bistables pour lesquels deux flammes différentes peuvent exister malgré des conditions opératoires identiques.L'utilisation de diagnostics optiques à haute cadence (diffusion de Mie des gouttes de combustible et émission spontanée de la flamme) est couplée à des méthodes de post-traitement avancées comme la Décomposition en Modes Dynamiques. Ainsi, des mécanismes pilotant la stabilisation des flammes ainsi que leurs changements de forme sont proposés. Ils mettent notamment en lumière les interactions entre l'écoulement gazeux, les gouttes de combustible et la flamme. / A promising way to reduce jet engines pollutant emissions is the use of lean premixed prevaporized combustion but it tends to trigger thermo-acoustic instabilities. To improve the stability of these flames, a procedure called staging consists in splitting the fuel injection to control its spatial distribution. This however leads to an increased complexity and unexpected phenomena can occur.In the present work, a model gas turbine combustor fed with liquid dodecane is used. It is equipped with two fuel injection stages to control the fuel distribution in the burner. Different flame stabilizations can be observed and a bistable case where two flame shapes can exist for the same operating conditions is highlighted.High-speed optical diagnostics (fuel droplets Mie scatering and chemiluminescence measurements) are coupled with advanced post-processing methods like Dynamic Mode Decomposition. The results enable to propose mechanisms leading to flame stabilization and flame shape transitions. They show a strong interplay between the gaseous flow, the fuel droplets and the flame itself.
58

[en] EXPERIMENTAL CHARACTERIZATION OF THE SOOT DISTRIBUTION AT THE TURBULENT NEAR WAKE OF A BLUFF-BODY BURNER / [pt] CARACTERIZAÇÃO EXPERIMENTAL DA DISTRIBUIÇÃO DA FULIGEM NAS PROXIMIDADES DE UM QUEIMADOR TIPO BLUFF-BODY

SUZANE PEREIRA DOS S NASCIMENTO 01 February 2019 (has links)
[pt] Entender o processo de produção de fuligem é crucial para o projeto de novos queimadores, como os de fornos industriais. Estes queimadores, que utilizam processos de combustão turbulenta, dependem de transferência de calor via radiação das partículas de fuligem para as paredes do forno para seu bom funcionamento. A fuligem formada na região de radiação deve ser oxidada para evitar problemas de saúde e meio ambiente. Mesmo tendo havido significativo progresso no decorrer das duas últimas décadas em relação às chamas laminares, a interação entre a turbulência e a produção de fuligem ainda é um problema em aberto. Este trabalho apresenta resultados experimentais recentes da distribuição instantânea e média da distribuição de fuligem em chamas turbulentas de etileno/ar não prémisturadas estabilizadas em um queimador do tipo bluff-body. A intensidade de turbulência na região de esteira deste queimador é muito alta, levando a uma presença de fuligem intermitente e a estruturas de fuligem altamente distorcidas. A distribuição de fuligem é medida usando incandescência induzida por laser (LII), com uma excitação em 266 nm a 10 Hz e fluência de 0,8 J/cm2 e medição em 400 nm por uma câmera intensificada. Os resultados da técnica LII são comparados à técnica clássica de extinção da luz. Resultados da distribuição de hidrocarbonetos aromáticos policíclicos também são apresentados. Os resultados obtidos permitem caracterizar a distribuição da função de densidade de probabilidade de fuligem. Nas situações de escoamento onde a turbulência da esteira é controlada pelo escoamento de ar, demonstra-se que a PDF da fração volumétrica de fuligem corresponde a uma distribuição lognormal. / [en] Understanding the soot production process is crucial to the design of new burners, such as those in industrial furnaces. Indeed, these burners, which use turbulent combustion processes, rely on radiative heat transfer from the soot particles to the furnace walls to operate properly. The soot formed within the radiation region must the be oxidized in order to avoid health and environment issues. Although there has been significant progress over the past two decades in relation to laminar flames, the interaction between turbulence and soot production is still an open problem. This works presents recent experimental results of the instantaneous and mean soot distribution on non-premixed turbulent ethylene/air flames stabilized at a bluff-body burner. The turbulence intensity in the wake region of this burner is very high, leading to a soot intermittent presence and to highly distorted soot structures. The soot distribution is measured using laserinduced incandescence (LII), with 266 nm excitation at 10 Hz, 0.8 J/cm2 fluence and collected at 400 nm by an intensified camera. The results of the LII technique are compared to those of a classical of light extinction technique. Polyciclic aromatic hydrocarbon distribution results are also presented. The results obtained allow to characterize the soot probability density function distribution. In flow situations where the wake turbulence is controlled by the air flow, the soot volume fraction PDF is shown to correspond to a lognormal distribution.
59

Numerical simulation of ignition in aeronautical combustion chambers / Simulation numérique de l'allumage dans les chambres de combustion aéronautiques

Barre, David 30 January 2014 (has links)
Pour des raisons évidentes d’opération et de sécurité, l’allumage est un problème essentiel dans les moteurs aéronautiques. La conception d’une chambre de combustion de turbine à gaz intègre de multiples objectifs contradictoires, l’un d’entre eux étant un allumage ou ré-allumage efficace des brûleurs. Parmi les paramètres dont disposent les ingénieurs dans la phase d’optimisation du design, le nombre de systèmes d’injection de carburant et leur espacement sont des points cruciaux qui doivent être fixés dès le début. En effet, de tels choix ont non seulement un impact sur le coût de fabrication et la taille de la chambre mais ils affectent aussi l’efficacité d’un moteur ainsi que ses caractéristiques d’allumage. Afin d’améliorer les connaissances relatives au processus l’allumage dans des moteurs réels, la recherche actuelle combine des expériences fondamentales de plus en plus complexes et des simulations numériques de haute fidélité. Ces actions se concentrent d’une part sur les premiers instants où le noyau de flamme apparaît et d’autre part sur la phase de propagation entre les différents brûleurs. Ces deux phases sont capitales mais restent difficiles à étudier simultanément. Le premier objectif de cette thèse vise à évaluer les modèles SGE sur un seul brûleur expérimental situé au CORIA (France) pour mettre en place une méthodologie fiable afin de réaliser numériquement une séquence d’allumage dans des conditions d’opération réelles et équivalentes aux premiers instants. Une telle étude met en jeu plusieurs phénomènes tels que les écoulement swirlés, l’allumage, l’extinction, la propagation de flamme et les interactions flamme/turbulence. Tous ces processus et mécanismes interagissent et augmentent de façon significative le niveau de difficulté, notamment pour modéliser la combustion turbulente d’un tel allumage. Ces modèles requièrent donc d’être évalués précisément. Ensuite, ce travail examine par la simulation numérique la phase de propagation en utilisant les expériences réalisées sur une chambre composée de plusieurs injecteurs. La comparaison des séquences d’allumage obtenues numériquement avec celles des données expérimentales montre que la SGE reproduit les bonnes tendances et s’avère prédictive. D’un point de vue global, les caractéristiques de propagation du front de flamme en direction des injecteurs voisins sont bien capturées par le numériquemontrant desmodes de propagation identiques à ceux obtenus expérimentalement (radial ou axial) et des temps d’allumage similaires. Pour finir, l’analyse détaillée de ces données numériques a permis d’identifier les mécanismes principaux qui sont à l’origine des différents modes de propagation. / For evident operational and safety reasons, ignition is a key feature of aeronautical gas turbine applications. In fact the design of a gas turbine combustion chamber imposes multiple contradicting objectives one of them being efficient ignition or re-ignition. Among all the parameters available to the engineers, the number of fuel injection systems and their spacing are crucial elements, that must be fixed early on in the design phase. Such choices however not only impact the manufacturing cost and size of the combustor but they also affect the operability of the engine as well as its ignition. To improve knowledge of the ignition process occurring in real engines, current research combines fundamental and increasingly complex experiments complemented by high fidelity numerical simulations. These actions focus on the one hand on the initial instants where the first flame kernel appears as well as the follow-on instants corresponding to the light-around phase or burner to burner flame propagation phase. Both phases are clearly important but are difficult to study simultaneously. The first purpose of this thesis aims at assessing LES models on a single experimental burner located at CORIA (France) to provide a reliable numerical methodology to achieve an ignition sequence in real engines. Indeed, various phenomena are involved in such numerical studies dedicated to real aeronautical combustion chambers and all need to be reproduced by numerics: swirling flows, ignition, quenching, flame propagation, flame/turbulence interactions. All of these processes interact and clearly raise the level of difficulty notably in terms of turbulent combustion modeling of an ignition transient. Having assessed the method on a single burner configuration, the work then investigates the second phase, using a multi-injector experiment simulated by LES to study the flame propagation during ignition. The comparison of numerical fully transient ignition sequences with experimental data shows that LES recovers features found in the experiment. Global events such as the propagation of the flame front to neighboring swirlers are well captured and correct propagation modes (radial or axial) as well as correct overall ignition time delay are obtained. Finally the detailed analysis of LES data allows to identify the driving mechanisms governing each of these propagation modes.
60

Development of Analytically Reduced Chemistries (ARC) and applications in Large Eddy Simulations (LES) of turbulent combustion / Développement de Chimies Analytiquement Réduites (CAR) et applications à la Simulation aux Grandes Échelles (SGE) de la combustion turbulente

Felden, Anne 30 June 2017 (has links)
L'impact environnemental du trafic aérien fait maintenant l'objet d'une réglementation qui tend à se sévériser. Dans ce contexte, les industriels misent sur l'amélioration des technologies afin de réduire la consommation de carburant et l'émission de polluants. Ces phénomènes dépendent en grande partie des chemins réactionnels sous-jacents, qui peuvent s'avérer très complexes. La Simulation aux Grandes Échelles (SGE) est un outil intéressant afin d'étudier ces phénomènes pour un coût de calcul qui reste raisonnable. Cependant, les processus chimiques, s'ils sont considérés sans simplification, font intervenir des centaines d'espèces aux temps caractéristiques très différents au sein de processus non-linéaires qui induisent une forte raideur dans le système d'équations, et un coût de calcul prohibitif. Permettant de s'absoudre de ces problèmes tout en conservant une bonne capacité de prédiction des polluants, les Chimies Analytiquement Réduites (CAR) font l'objet d'une attention grandissante au sein de la communauté. Les CAR permettent de conserver la physique du problème considéré, en conservant les espèces et voies réactionnelles les plus importantes. Grâce à l'évolution toujours croissante des moyens de calculs, les CAR sont appliqués dans des configurations de plus en plus complexes. Les travaux de thèse ont principalement portés sur deux sujets. Premièrement, une étude poussée des techniques et outils permettant une réduction efficace et systématique de chimies détaillées. L'outil de réduction multiétapes YARC est retenu et exhaustivement employé dans la dérivation et la validation d'une série de CAR préservant la description de la structure de flamme. Ensuite, une investigation de la faisabilité et des bénéfices qu'apportent l'utilisation de CAR en LES, comparé a des approches plus classiques, sur des cas tests de complexité croissante. La première configuration étudiée est une chambre de combustion partiellement pré-mélangée brûlant de l'éthylène, étudiée expérimentalement au DLR. Différentes modélisations de la chimie sont considérées, dont un CAR développé spécifiquement pour ce cas test, et les résultats démontrent qu'une prise en compte des interactions flamme-écoulement est cruciale pour une prédiction juste de la structure de la flamme et des niveaux de suies. La seconde configuration est un brûleur diphasique, avec une injection directe pauvre, brûlant du Jet-A2. Dans cette étude, une approche novatrice pour la prise en compte de la complexité du fuel réel (HyChem) est considérée, permettant la dérivation d’un CAR. Les résultats sont excellents et valident la méthodologie tout en fournissant une analyse précieuse des interactions flamme-spray et de la formation de polluants (NOx) dans des flammes à la structure complexe. / Recent implementation of emission control regulations has resulted in a considerable demand from industry to improve the efficiency while minimizing the consumption and pollutant emissions of the next generation of aero-engine combustors. Those phenomena are shown to strongly depend upon the underlying complex chemical pathways and their interaction with turbulence. Large Eddy Simulation (LES) is an attractive tool to address those issues with high accuracy at a reasonable computing cost. However, the computation of accurate combustion chemistry remains a challenge. Indeed, combustion proceeds through complex and highly non-linear processes that involve up to hundreds of different chemical compounds, which significantly increases the computational time and often induces stiffness in the resolved equations. As a mean to circumvent these drawbacks while retaining the necessary kinetics for the prediction of pollutants, Analytically Reduced Chemistry (ARC) has recently received high interest in the Computational Fluid Dynamics (CFD) community. ARC is a strategy for the description of combustion chemistry where only the most important species and reactions are retained, in a "physically-oriented way". ARC is on the verge of becoming affordable at a design stage, thanks to the continuously increasing available computational resources. The goal of the present work is twofold. A first objective is to test and validate efficient techniques and tools by which detailed chemistries are reduced to an LES-compliant format. To do so, the multi-step reduction tool YARC is selected and employed to derive and validate a series of ARC specifically designed to retrieve correct flame structures. A second objective is to investigate the overall feasibility and benefits of using ARC, combined to the Thickened Flame model (DTFLES), in performing LES of configurations of increasing complexity. The first configuration is a sooting swirl-stabilized non-premixed aero-engine combustor experimentally studied at DLR, burning ethylene. LES of this configuration is performed with the AVBP solver, in which ARC has been implemented. By comparison with global chemistry and tabulated chemistry, results highlight the importance of accurately capturing the flow-flame interactions for a good prediction of pollutants and soot. The second configuration is a swirled twophase flow burner featuring a lean direct injection system and burning Jet-A2. A novel methodology to real fuel modeling (HyChem approach) is employed, which allows subsequent ARC derivation. The excellent results in comparison with measurements constitute an additional validation of the methodology, and provide valuable qualitative and quantitative insights on the flame-spray interactions and on the pollutant formation (NOx) mechanisms in complex flame configurations.

Page generated in 0.034 seconds