• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 704
  • 353
  • 35
  • 27
  • 10
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 3195
  • 2531
  • 2217
  • 2058
  • 386
  • 386
  • 197
  • 176
  • 169
  • 155
  • 145
  • 129
  • 127
  • 123
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Characterisation of silicon photonics devices

Leung, David January 2013 (has links)
Silicon based integrated circuits has been dominating the electronics technology industry in the last few decades. As the telecommunications and the computing industry slowly converges together, the need for a material to build photonics integrated circuits (PIC) that can be cost-effective and be produced in mass market has become very important. This thesis describes and outlines the characteristics of high index contrast waveguides as a building blocks that can be designed, fabricated and employed on devices in silicon photonics. Initially in this work, a fully vectorial H-field based finite element method has been used to obtain the modal characteristics of high index contrast bent waveguide to get a better understanding of the curved section. Through the beam propagation method, the propagation losses and the spot-size along the propagation distance are obtained when a mode from the straight guide is launched into a bent guide. It is also learnt that mode beating exists at the junction of a straight-to-bent waveguide, in which higher order modes will also be generated. It will be shown in this work that power do exchange between the two polarization states, therefore the polarization conversion, the power losses and the bending losses will be investigated. It will also shown in here that by applying lateral offsets with coupled waveguides of unequal widths, the insertion loss can be reduced. Secondly, for a high index contrast waveguide such as the silicon strip waveguide with a nanoscale cross-section, modes in such waveguide are not purely TE or TM but hybrid in nature, with all the six components of their E and H-fields being present. Therefore a detail analysis of the modal field profiles along with the Poynting vector profile will be shown. The effects of waveguide's width and height on the effective indices, the hybridness, the modal effective area and the power confinement in the core or cladding has been studied. Furthermore the modal birefringence of such strip waveguide will be shown. It will be presented that for a strip waveguide with height of 260 nm, single mode exists in the region of the width being 200 nm to 400 nm and that the modal effective is at its minimum when width is around 320 nm for both polarization states. Thirdly, a compact polarization rotator with an asymmetric waveguide structure design, suitable for fabrication that does not require a slanted side wall or curved waveguide is considered in this work. It will be shown in here that due to the hybrid nature of the asymmetric waveguide design, maximum polarization rotation (from TE to TM) will be achieve by enhancing the non-dominant field profile of both polarized fundamental mode. As the modal hybridness and the propagation constants of both polarized modes will be obtained, the half-beat length, polarization conversion and polarization cross-talk will be calculated by using the FEM and the least squares residual boundary method (LSBR). It is learnt that a compact single stage polarization rotator with a device length of 48 μm with more than 99% of polarization conversion is achieved in this work. Finally, a study of vertical and horizontal slot waveguide will be shown. Based on silicon strip waveguide, a detail modal characteristics of E and H-fields along with the Poynting vectors are presented. It will be shown that for slot waveguide, high power confinement and power density will be achieved in the slot area. It will be presented that by optimising the waveguide and slot dimension, the performance of the power confinement and power density in the slot region can be improved.
182

Thulium-doped fibre laser in the 2 μm wavelength region for gas sensing

Pal, Atasi January 2013 (has links)
The transition 3F4->3H6 of trivalent Thulium is widely studied for generating lasers at wavelength near 2 μm. For decades, tuneable continuous wave narrow line-width sources in this wavelength region have been proved to be very useful as spectroscopic tools for trace gas detection. Semiconductor lasers are often not readily available at a reasonable cost with the specific wavelengths required to provide a close ‘match’ to the key absorption features of the gases of interest. Well-designed fibre laser-based systems, however, can overcome this limitation by offering potentially much wider wavelength ranges, coupled with their distinctive and valuable features such as stability, narrow linewidth and high tuneability at room temperature. In this work, a compact ‘all-fibre’ laser system has been specifically designed, developed and evaluated, as this type of laser systems is highly desirable for ‘in-the-field’ applications. This takes full advantages of the active fibres based on silica glass host compared to other non-oxide glass hosts in terms of their chemical durability, stability and crucial structural compatibility with readily available telecommunication optical fibres. Ideal host composition for Thulium and efficient pumping scheme posses major challenges restricting the production of commercially deployable efficient ‘all-fibre’ lasers in the 2 μm wavelength region. The aim of the thesis work is to address these challenges. The work presented in this thesis demonstrates a modulated Thulium-doped ‘all-fibre’ tuneable laser in the 2 μm wavelength region suitable for detection of a number of gases of interest. The scope of work includes the fabrication and optimization of the active fibre with the core composition suitable for the creation of an effective Thulium-doped fibre laser. Codoping of Ytterbium is explored to investigate the energy-transfer mechanism from Ytterbium to Thulium and thereby opening up the opportunity of using economic pump laser diodes emitting at around 0.98 μm. In this respect, both Thulium- and Thulium/Ytterbium-doped single-mode single-clad silica optical fibres are designed and fabricated for a systematic analysis before being used as laser gain media. The optical preforms having different host compositions, Thulium-ion concentrations and proportions of Ytterbium to Thulium are fabricated by using the Modified Chemical Vapour Deposition technique coupled with solution doping to enable the incorporation of rareearth ions into the preforms. A thorough investigation of the basic absorption and emission properties of Thulium-doped silica fibres has been performed. The step-wise energy-transfer parameters in Thulium/Ytterbium-doped silica fibre have been determined quantitatively from spectroscopic measurements along with migrationassisted energy-transfer model. A set of tuneable Thulium-doped ‘all-fibre’ lasers, offering a narrow line-width in the 2 μm wavelength region, is created by using fabricated Thulium-and Thulium/Ytterbium-doped fibres as gain media and fibre Bragg grating pairs under in-band pumping at 1.6 μm and/or pumping by an economical laser diode at 0.98 μm, utilizing Ytterbium to Thulium energy- transfer. The host composition and the dopnat concentration in the single-mode single-clad fibre configuration are optimized to achieve maximum lasing efficiency. The tuning of laser wavelength has been achieved by using relaxation/compression mechanism of the fibre Bragg grating pair used to confine the laser cavity. A new set of laser resonators has also been formed by using a combination of a high reflective fibre Bragg grating with a low reflective broadband mirror, fabricated at the end of the fibre through silver film deposition, to enable only one fibre Bragg grating to be tuned. The stability of the laser output power, line-width and shape have been monitored throughout the tuning range. This is followed by the design of a compact, high-Q, narrow line-width and low threshold microsphere laser resonator, operating in the 2 μm wavelength region, by coupling a Thulium-doped silica microsphere to a tapered fibre. In the microsphere, laser emission occurred at wavelengths over the range from 1.9 to 2.0 μm under excitation at a wavelength of around 1.6 μm. The designed modulated tuneable Thulium-doped ‘all-fibre’ laser, operating at a wavelength range centred at a wavelength of 1.995 μm, has been tested for CO2 gas detection. Both the modulation of the fibre laser, through pump source modulation and the ‘locking’ detection mechanism have been utilized to eliminate laser intensity noise and therefore to obtain a compact gas sensor with high sensitivity. The absorption spectrum, the line-strength and the concentration level of CO2, have been monitored using the absorption spectroscopic technique. The measured minimum detectable concentration of CO2 obtained using the system confirms the claim that it is capable of detecting trace gases at the ppm level. The stable laser performance achieved in the sensor system illustrates its potential for the development of practical, compact yet sensitive fibre laser based gas sensor systems.
183

Finite element characterisation of photonic crystal fibres

Uthman, Muhammad January 2013 (has links)
Rigorous numerical simulations have been carried out by using the Finite Element Method (FEM) in order to calculate bending and leakage losses of Photonic Crystal Fibres (PCF). A modal solution approach including the implementations of the conformal transformation and the Perfectly Matched Layer (PML) were undertaken to determine the bending and leakage losses of several designs of Photonic Crystal Fibres. This was carried out by varying key parameters such as the pitch (Λ), diameter (d) and air-filling fraction (d/Λ). Output modal parameters including the effective indices, spot sizes, leakage and bending losses as well as the mode field profiles were obtained. These output parameters were obtained by varying the bending radius (R) from very large values to very low values for different dimensions of the PCF, with results being obtained for Transverse Magnetic and Transverse Electric (quasi-TM and quasi-TE) polarizations. These parameters were calculated by solving the Maxwell’s equations using the H-field vector formulation and with the inclusion of PML to solve complex eigenvalue equations. Generally, it was observed that for all Λ, d/Λ and the polarization considered, as R is reduced from a very high value to lower values, the bending losses increase and there is a sharp increase at some lower values of R. At some very low values of R, some oscillatory behaviour was observed in the curves obtained for the fibre losses, where further investigations were carried out. These oscillations appeared due to degeneration of the fundamental mode with the cladding modes. In most of the cases investigated, there was a correlation in the variation of effective indices the loss values and also in the variation of spot sizes. PCFs with non-identical air-holes were also investigated in which case the d ≠ d2 (diameter of 4 larger air-holes in the first ring) and knowing the values for TM and TE polarizations, it was possible to determine the birefringence, which is the difference between the effective indices for the TM and TE modes and also the loss ratio, which is the ratio of TM loss to that of the TE loss. All the input and output parameters that were considered with the symmetric air-holes were also considered in the case with fibre with asymmetric air-holes study. The results obtained are very important in the design of Single Mode Single Polarization PCF. Results have also been obtained from the studies done of asymmetric arrangement of air-holes which lead to the design of Single Mode Single Polarization PCF. Work was carried out on the design of a tapered PCF that could be efficiently coupled to a single mode fibre, SMF. This was achieved by increasing the number rings up to 10 rings of air-holes in the cladding and having the outermost ring with larger air-holes, the inner rings were near cutoff. This fibre was coupled to a conventional SMF to allow for better tolerance to fabrication errors. There has also been work carried out in polymer fibre namely Teflon and TOPAS in the terahertz regime. The conventional hexagonal arrangement of PCF was simulated and compared to spiral PCF in THz. An improved PCF design having a porous core with hexagonal arrangement and cladding was designed and analysed and low-loss guidance in THz was achieved. Thus overall a number of different PCF designs were considered and their properties evaluated and detailed knowledge has been obtained on potential performance of such fibres.
184

Second harmonic generation in novel optical waveguides

Wijeratne, I. January 2013 (has links)
Second Harmonic Generation has traditionally been restricted to crystals; however, due to the development of highly sophisticated fabrication technology, poling and phase matching techniques, it has now become feasible in glass fibres and waveguides which are widely used in nonlinear optics. For instance, silica glass based Photonic Crystal Fibres (PCF) exhibit long coherence lengths and controllable optical properties such as chromatic dispersion despite low second order nonlinearity. Given such benefits, the numerical modelling and analysis of optical waveguides accurately and efficiently has become vital for the advancement of nonlinear optics. Hence, this thesis focuses on enhancing the Second Harmonic Generation in optical waveguides through the use of different structures and different materials, and demonstrating the same by numerical simulations. In this thesis, the accurate and numerically efficient Finite Element based Beam Propagation Method has been employed to investigate the evolution of Second Harmonic Generation in highly nonlinear SF57 soft glass Equiangular Spiral PCFs. Further, the H-field based Finite Element Method has been employed for the stationary analysis of Photonic Crystal Fibres. It is shown here that the second harmonic output power in highly nonlinear
185

Intelligent energy management system : techniques and methods

Ma, Yingnan January 2011 (has links)
ABSTRACT Our environment is an asset to be managed carefully and is not an expendable resource to be taken for granted. The main original contribution of this thesis is in formulating intelligent techniques and simulating case studies to demonstrate the significance of the present approach for achieving a low carbon economy. Energy boosts crop production, drives industry and increases employment. Wise energy use is the first step to ensuring sustainable energy for present and future generations. Energy services are essential for meeting internationally agreed development goals. Energy management system lies at the heart of all infrastructures from communications, economy, and society’s transportation to the society. This has made the system more complex and more interdependent. The increasing number of disturbances occurring in the system has raised the priority of energy management system infrastructure which has been improved with the aid of technology and investment; suitable methods have been presented to optimize the system in this thesis. Since the current system is facing various problems from increasing disturbances, the system is operating on the limit, aging equipments, load change etc, therefore an improvement is essential to minimize these problems. To enhance the current system and resolve the issues that it is facing, smart grid has been proposed as a solution to resolve power problems and to prevent future failures. This thesis argues that smart grid consists of computational intelligence and smart meters to improve the reliability, stability and security of power. In comparison with the current system, it is more intelligent, reliable, stable and secure, and will reduce the number of blackouts and other failures that occur on the power grid system. Also, the thesis has reported that smart metering is technically feasible to improve energy efficiency. In the thesis, a new technique using wavelet transforms, floating point genetic algorithm and artificial neural network based hybrid model for gaining accurate prediction of short-term load forecast has been developed. Adopting the new model is more accuracy than radial basis function network. Actual data has been used to test the proposed new method and it has been demonstrated that this integrated intelligent technique is very effective for the load forecast. Choosing the appropriate algorithm is important to implement the optimization during the daily task in the power system. The potential for application of swarm intelligence to Optimal Reactive Power Dispatch (ORPD) has been shown in this thesis. After making the comparison of the results derived from swarm intelligence, improved genetic algorithm and a conventional gradient-based optimization method, it was concluded that swam intelligence is better in terms of performance and precision in solving optimal reactive power dispatch problems.
186

Creation of novel gold-nanorod-based localized surface plasmon resonance biosensors

Cao, Jie January 2013 (has links)
Starting with a comprehensive review of both surface plasmon resonance (SPR) based and localized surface plasmon resonance (LSPR) based sensors, this thesis reports the studies on the development of a novel sensitive gold nanorod (GNR) based label-free LSPR optical fibre biosensor, and the development of a novel robust method for effectively modifying the surface of cetyl-trimethyl ammonium bromide (CTAB) capped GNRs and their LSPR biosensing applications. A novel GNR-based LSPR optical fibre sensor was fabricated and evaluated in this work. The sensor probe was prepared by covalently immobilizing GNRs, synthesized using a seed-mediated growth method, on the decladed surface of a piece of multimode optical fibre. In order to operate the LSPR sensor as a reflective sensor, a silver mirror was also coated at one distal end of the sensor probe by a dip coating method. In the refractive index sensitivity test, it was found that the longitudinal plasmon band (LPB) of GNRs is highly sensitive to the refractive index change close to the GNRs surface, and the sensitivity of the LSPR optical fibre sensor increases with the increase of the aspect ratio of GNRs. The results showed that the GNR-based LSPR optical fibre sensors prepared in this work have linear and high refract index sensitivities. For sensors based on GNRs with aspect ratios of 2.6, 3.1, 3.7 and 4.3, their refractive index sensitivities were found to be 269, 401, 506 and 766 nm/RIU (RIU = refractive index unit), respectively, in the refractive index range from 1.34 to 1.41. In order to evaluate the biosensing performance, the GNR-based LSPR optical fibre sensor with aspect ratio of 4.1 and a 2 cm sensing length was further functionalized with human IgG to detect the specific target — anti-human IgG, and a detection limit of 1.6 nM was observed using a wavelength-based interrogation approach. In another study, in order to overcome the drawbacks of the CTAB-capped GNRs found in biosensing and biomedical applications, a simple yet robust pH-mediated method for effectively modifying the surface of CTAB-capped GNRs synthesized by the seed-mediated growth method was developed. This method allows the complete replacement of the CTAB molecules attached on the GNRs surface with the 11-mercaptoundecaonic acid (MUA) molecules to take place in a total aqueous environment by controlling the pH of the MUA aqueous solution, thus avoiding the irreversible aggregation of GNRs during the complex surface modification process observed in the previous reported methods. The success of the complete replacement of CTAB with MUA was confirmed by the surface elemental analysis using an X-ray photoelectron spectroscopy (XPS), and the MUA-modified GNRs created in this work demonstrated a high stability up to 4 months at least when stored in a buffer solution at pH 9 at 4°C. The MUA-modified GNRs with an aspect ratio of 3.9 were furthered developed as a solution-phase-based label-free LSPR biosensor by functionalizing the GNRs with human IgG. A detection limit as low as 0.4 nM for detecting anti-human IgG was achieved by this sensor. The achievements of this work are concluded and the directions of future work are also pointed out.
187

Optical characterisation of cavitating flows in diesel fuel injection equipment

Jeshani, Mahesh January 2013 (has links)
The recent advances in Fuel Injection Equipment (FIE) have led to the identification of deposits found in the fuel filters and injector equipment. The work carried out here identifies the effects of cavitating flows on the physical and chemical properties of diesel fuel in order to try to evaluate the mechanism for deposit formation in FIE equipment using optical techniques to characterise the cavitating flows. Two sets of experiments have been carried out in order to understand the impact of cavitating flow on diesel fuels. The first experiment investigated the effects of sustained cavitating flow using a fuel recirculation rig. Samples of commercial diesel were subjected to forty hours of intense cavitating flow across a diesel injector in a specially designed high-pressure recirculation flow rig. Changes to the optical absorption and scattering properties of the diesel over time were identified by the continuous measurement of spectral attenuation coefficients at 405 nm by means of a simple optical arrangement. Identical diesel samples ~ere maintained at 70°C for forty hours in a heated water bath, in order to distinguish the effects of hydrodynamic cavitation and the regulated temperature on the cavitated diesel samples. The commercial diesel samples subjected to high pressure cavitating flow and heat tests revealed a response to the flow and temperature history that was identified by an increase in the optical attenuation coefficients of the cavitated and heated samples. The contribution of cavitating flow and temperature to the variation in spectral attenuation coefficient was identified. It was hypothesised that the increases observed in the spectral attenuation coefficients of the cavitated commercial diesels were caused by the cavitation affecting the aromatics in the commercial diesel . samples. The fuels were sent for a GC x GC and particle count analysis and results show significant increase in particle number count in the fuels as a result of cavitating flow. An increase in particle count to such high magnitudes was not observed for the heat test samples. Qualitative chemical modelling results of the pyrolysis of fuel vapour cavities during collapse at high pressures and temperatures have shown possible pathways leading to the formation of particulates. The presence of aromatics in diesel fuel was considered to be key species to the formulation of soot particles, however at extreme pressures and temperature paraffins may also have the propensity to breakdown into aromatics and further on to the formation of soot particles as observed by the pathway analysis in the modelling in the appendix. The second study undertaken involved the analysis of the near nozzle external spray dropsizing and atomisation characteristics of fuels with different distillation profiles using LIF-MIE image ratios. The LIF -Mie image ratios were simultaneously captured synchronously with the internal nozzle hole cavitating flow. Internal nozzle flow and sac observations after needle return have led to the conclusions that flow angular momentum is sustained in the sac flow after needle return. This flow was observed to have a high angular momentum which reduced over time. During the end of needle return, bubbles were observed in the sac hole forming as a result of needle cavitation. These bubbles retained the angular momentum of the flow post injection (after needle seal). The vortical motion in the sac lead to regions of high and low pressures in the sac volume and thus resulted in suction and discharge of bubble in the nozzle holes. The bubbles may have a high propensity of containing a mixture of fuel and air vapour whereas the suction and discharge offers a pathway to external gases entering the nozzle holes and sac volume. For operating engine conditions this would be post-combustion exhaust gases re-entering the nozzle holes. The combination of the bubble formation, its vOI1Ical motion due to the angular momentum of the liquid flow, its composition and high temperature, may form ideal conditions for pyrolysis like reactions which may lead to the formation of soot particles and deposits in the nozzle hole, sac and needle. Fuels with different distillation profiles were investigated to observe their external drop sizing distributions at 350 bar injection pressure. Results showed that fuels with lighter fractional compositions which also had lower viscosity produced lower Sauter Mean Diameter (SMD) distributions than fuels with higher distillation fractions and higher viscosity. Whether this is as a consequence of the distillation profile alone and is not influenced by the viscosity differences has not been investigated yet and would form the basis of further investigations and publications.
188

Solutions properties and techniques for implicit systems

Pantelous, Athanasios January 2013 (has links)
In economic theory, input-output analysis has been developed for the description of the production of a multi-sector economy. An input-output model is a quantitative economic technique that represents the interdependencies between different branches of a national economy or different regional economies. In the region of input-output economics, many models were established to describe the real economics.
189

Performance comparison and simulation of permanent magnet AC drives and parameter estimation techniques

Morton, Graham H. January 2013 (has links)
This thesis presents research on common PWM switching strategies implemented with permanent magnet AC machine drives. This study also considers online parameter estimation techniques that can be implemented with such drives. Finally a new simulation model of the drive and tools for modelling the specific machine under test are presented. Initially the research focuses on comparisons of the performance parameters which are influenced by the differences in current control strategies. Bang-Bang, PI and SVPWM controllers are the three alternative switching strategies which are discussed and then evaluated. The results highlight the impact the strategy selection has on the phase current quality and hence the power output of the motor under test. PI and SVPWM are both strategies that utilise a fixed switching frequency and as a result exhibit larger power losses in the inverter stage of the drive system. Bang-Bang control is seen to exhibit greater power losses in terms of output power in the motor stage as a direct result of the poor quality phase current waveform generated. The experiments conducted allow for a thorough comparison of each strategy outlined. Techniques used to estimate the average phase voltage commanded under operation are presented in this thesis. Techniques for estimating phase voltage when operating the SVPWM technique on a wye connected machine is described, as are techniques for use with both PI and SVPWM control of a delta connected machine. This is based on published techniques that have been implemented for the PI wye connected case. The voltage estimation techniques are then used to estimate the flux linkage waveforms of the machine under test. Validation for this technique is sought through comparison of measurements with predictions made using commercially available finite element analysis tools; the measurements and predictions are shown to correlate to a significant degree. In search of validating the techniques against measurements made with calibrated measurement equipment – known to be reliable – the validation path results in subsequent techniques to be developed which estimate the average torque output of the machine under test. Torque measurements made using commercially available torque transducer equipment are compared with online estimates allowing for a validation of the voltage estimations. Using a new simulation environment – Portunus from Adapted Solutions – a modern permanent magnetic synchronous machine drive system has been modelled. Making use of a PMSM component developed by Dr Mircea Popescu of Motor Design Ltd, a model of the drive system is constructed by the addition of customised components of the controller technology and other drive system hardware. This includes a custom developed C++ model of the SPEED laboratory FCIV technology which is used to control the drive system used in this research. Use of standard Portunus logic components is also presented which effectively models the interface of the gate drive signals with the voltage inverter components of the drive system. Finally the thesis details the results of simulations modelling the comparison of the control strategies of chapter 2 and also the online estimation techniques of chapter 3. The simulation model’s inclusion of a dedicated machine component allows for effective tailoring of the system model on a per machine basis; this allows for a comparison of the results presented in the initial testing with the simulated equivalents. Such a comparison is also made between the results of the testing of the online torque estimation techniques and the simulated response of the estimation techniques. Strong correlation is shown between the results of the testing carried out in the early stages of the research using the drive system outlined in chapters 2 and 3 with the simulation results obtained using the model outlined in chapters 4 and 5.
190

3D non-linear and multi-region boundary element stress analysis

Gao, Xiao-Wei January 1999 (has links)
The new findings can be outlined as follows: Two new simple auxiliary equations which are required to supplement the fundamental boundary integral equations in solving traction-discontinuity problems using multiple-node technique are derived from the symmetric property and the equilibrium equations of the stress tensor. These equations have been used to deal with the corners and edges of single region and multi-region problems. A sub-structure algorithm is developed for solving multi-region problems with corners and edges, using the derived auxiliary equations. This algorithm can deal with nodes where more than two materials intersect. A novel infinite element formulation suitable for multi-layered media was developed. In particular, a set of useful analytical expressions was derived for evaluating strongly singular surface integrals over the infinite surface. A set of unified elastoplastic constitutive relationships dealing with hardening, softening and ideal plasticity behaviour is derived from the Il'iushin postulate in strain space. These relationships are suitable for both small and finite deformation rate-independent elastoplastic problems. Some new identities are derived for the initial stress and strain kernels. Based on these, a new transformation technique from domain integrals to cell boundary integrals is developed, for accurate evaluation of the strongly singular domain integrals pertaining to interior stresses. Two new iterative schemes are introduced for the first time in the incremental variable stiffness method for solving the non-linear system of equations. In particular, in the second one, a novel assembly process was proposed, in which the system equations are expressed in terms of the plastic multiplier. These formulations have been implemented within a Fortran computer code and illustrative numerical examples have been solved to demonstrate its practical utility.

Page generated in 0.0492 seconds