• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of patients appointments in chemotherapy treatment unit: heuristic and metaheuristic approaches

Shahnawaz, Sanjana 18 September 2012 (has links)
This research aims to improve the performance of the service of a Chemotherapy Treatment Unit by reducing the waiting time of patients within the unit. In order to fulfill the objective, initially, the chemotherapy treatment unit is deduced as an identical parallel machines scheduling problem with unequal release time and single resource. A mathematical model is developed to generate the optimum schedule. Afterwards, a Tabu search (TS) algorithm is developed. The performance of the TS algorithm is evaluated by comparing results with the mathematical model and the best results of benchmark problems reported in the literature. Later on, an additional resource is considered which converted the problem into a dual resources scheduling problem. Three approaches are proposed to solve this problem; namely, heuristics, a Tabu search algorithm with heuristic (TSHu), and Tabu search algorithm for dual resources (TSD).
2

Optimization of patients appointments in chemotherapy treatment unit: heuristic and metaheuristic approaches

Shahnawaz, Sanjana 18 September 2012 (has links)
This research aims to improve the performance of the service of a Chemotherapy Treatment Unit by reducing the waiting time of patients within the unit. In order to fulfill the objective, initially, the chemotherapy treatment unit is deduced as an identical parallel machines scheduling problem with unequal release time and single resource. A mathematical model is developed to generate the optimum schedule. Afterwards, a Tabu search (TS) algorithm is developed. The performance of the TS algorithm is evaluated by comparing results with the mathematical model and the best results of benchmark problems reported in the literature. Later on, an additional resource is considered which converted the problem into a dual resources scheduling problem. Three approaches are proposed to solve this problem; namely, heuristics, a Tabu search algorithm with heuristic (TSHu), and Tabu search algorithm for dual resources (TSD).
3

Multi-Antenna Communication Receivers Using Metaheuristics and Machine Learning Algorithms

Nagaraja, Srinidhi January 2013 (has links) (PDF)
In this thesis, our focus is on low-complexity, high-performance detection algorithms for multi-antenna communication receivers. A key contribution in this thesis is the demonstration that efficient algorithms from metaheuristics and machine learning can be gainfully adapted for signal detection in multi- antenna communication receivers. We first investigate a popular metaheuristic known as the reactive tabu search (RTS), a combinatorial optimization technique, to decode the transmitted signals in large-dimensional communication systems. A basic version of the RTS algorithm is shown to achieve near-optimal performance for 4-QAM in large dimensions. We then propose a method to obtain a lower bound on the BER performance of the optimal detector. This lower bound is tight at moderate to high SNRs and is useful in situations where the performance of optimal detector is needed for comparison, but cannot be obtained due to very high computational complexity. To improve the performance of the basic RTS algorithm for higher-order modulations, we propose variants of the basic RTS algorithm using layering and multiple explorations. These variants are shown to achieve near-optimal performance in higher-order QAM as well. Next, we propose a new receiver called linear regression of minimum mean square error (MMSE) residual receiver (referred to as LRR receiver). The proposed LRR receiver improves the MMSE receiver by learning a linear regression model for the error of the MMSE receiver. The LRR receiver uses pilot data to estimate the channel, and then uses locally generated training data (not transmitted over the channel) to find the linear regression parameters. The LRR receiver is suitable for applications where the channel remains constant for a long period (slow-fading channels) and performs well. Finally, we propose a receiver that uses a committee of linear receivers, whose parameters are estimated from training data using a variant of the AdaBoost algorithm, a celebrated supervised classification algorithm in ma- chine learning. We call our receiver boosted MMSE (B-MMSE) receiver. We demonstrate that the performance and complexity of the proposed B-MMSE receiver are quite attractive for multi-antenna communication receivers.

Page generated in 0.0571 seconds