• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. / 食道癌に対する化学放射線療法後または放射線療法後局所遺残再発病変に対するタラポルフィンナトリウムと半導体レーザーを用いた光線力学療法の多施設第II相試験

Yano, Tomonori 24 November 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13132号 / 論医博第2136号 / 新制||医||1024(附属図書館) / (主査)教授 溝脇 尚志, 教授 坂井 義治, 教授 山田 泰広 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Phase I animal safety study of new second generation porphyrin based photosensitizers in the Syrian Golden hamster

Wittmann , Johannes , Clinical School - South Western Sydney, Faculty of Medicine, UNSW January 2007 (has links)
Pancreatic cancer kills over 1700 people each year in Australia. In 2000, there were 1908 new cases diagnosed and it remains one of the least treatable malignancies. In the USA, it was the fourth leading cause of cancer death in 2004, with 31,860 new cases and 31,270 recorded deaths. Photodynamic therapy (PDT) is a novel, potentially useful treatment for locally advanced pancreatic cancer with only limited research and clinical work addressing this until now. PDT induces non-thermal, cytotoxic and ischaemic injury to a targeted volume of tissue. During PDT, a photosensitizer is activated by non-thermal light in the presence of oxygen, generating cytotoxic oxygen species and inducing cellular injury and microvascular occlusion. The aim of this thesis was to conduct an animal safety study using two second generation photosensitizers, talaporfin sodium and verteporfin, to assess the risks of pancreatic PDT by looking at injury to organs adjacent to the pancreas and assessing recovery from PDT treatment of the pancreas. The Syrian Golden hamster animal model was used to compare the results of this research to previous work by other authors. The study design incorporated a number of additional experiments, including quantitative tissue fluorescence techniques, plasma level analysis and histopathology techniques. The methods for the animal safety study were similar to the approach used in the clinical setting and provided vital data on the likely risks and side effects of phototherapy in humans. The first study, looking at talaporfin sodium, found likely risks of duodenal injury, gastric injury and death with a limited effect on normal pancreas at photosensitizer doses likely to be employed for pancreatic cancer PDT. The second study, using verteporfin, found similar results with a more potent effect on the normal pancreas at studied drug doses. Both agents had short drug-light intervals, ranging from 15 minutes to 2 hours, reducing the need for pre-treatment hospitalization and short photosensitivity periods of about one to two weeks. Some animals suffered minor cutaneous photosensitivity injuries. A human pancreatic cancer PDT pilot study is feasible and the risks and complications should be acceptable.
3

Phase I animal safety study of new second generation porphyrin based photosensitizers in the Syrian Golden hamster

Wittmann , Johannes , Clinical School - South Western Sydney, Faculty of Medicine, UNSW January 2007 (has links)
Pancreatic cancer kills over 1700 people each year in Australia. In 2000, there were 1908 new cases diagnosed and it remains one of the least treatable malignancies. In the USA, it was the fourth leading cause of cancer death in 2004, with 31,860 new cases and 31,270 recorded deaths. Photodynamic therapy (PDT) is a novel, potentially useful treatment for locally advanced pancreatic cancer with only limited research and clinical work addressing this until now. PDT induces non-thermal, cytotoxic and ischaemic injury to a targeted volume of tissue. During PDT, a photosensitizer is activated by non-thermal light in the presence of oxygen, generating cytotoxic oxygen species and inducing cellular injury and microvascular occlusion. The aim of this thesis was to conduct an animal safety study using two second generation photosensitizers, talaporfin sodium and verteporfin, to assess the risks of pancreatic PDT by looking at injury to organs adjacent to the pancreas and assessing recovery from PDT treatment of the pancreas. The Syrian Golden hamster animal model was used to compare the results of this research to previous work by other authors. The study design incorporated a number of additional experiments, including quantitative tissue fluorescence techniques, plasma level analysis and histopathology techniques. The methods for the animal safety study were similar to the approach used in the clinical setting and provided vital data on the likely risks and side effects of phototherapy in humans. The first study, looking at talaporfin sodium, found likely risks of duodenal injury, gastric injury and death with a limited effect on normal pancreas at photosensitizer doses likely to be employed for pancreatic cancer PDT. The second study, using verteporfin, found similar results with a more potent effect on the normal pancreas at studied drug doses. Both agents had short drug-light intervals, ranging from 15 minutes to 2 hours, reducing the need for pre-treatment hospitalization and short photosensitivity periods of about one to two weeks. Some animals suffered minor cutaneous photosensitivity injuries. A human pancreatic cancer PDT pilot study is feasible and the risks and complications should be acceptable.

Page generated in 0.0211 seconds