Spelling suggestions: "subject:"talkeetna mountains"" "subject:"talkeetna fountains""
1 |
Insights for provenance analysis of modern watersheds from detrital apatite and detrital zircon U-PB geochronology- Talkeetna Mountains, southcentral AlaskaAmes, Carsyn Jean 01 May 2018 (has links)
Detrital zircon U-Pb geochronology is a useful tool for analyzing provenance in the sedimentary record. Differentiating recycled and first cycle populations in the detrital record, however, is not a straightforward process. A second potential problem in using detrital signatures to determine provenance of sediment lies in the assumption that detrital signatures of modern rivers reflect input from each exposed unit in the catchment boundaries. To investigate each of these problems, I present U-Pb analysis of detrital zircon (DZ) from modern river sand collected from 20 watersheds, 6 detrital apatite (DA) signatures from modern river sand, and 6 DA signatures from exposed strata, all within the Talkeetna Mountains (south-central Alaska). DA rarely survives past the first cycle of erosion and deposition due to its inability to survive chemical weathering, and thus dominantly represent igneous input in detrital signatures, whereas zircon can be of igneous origin or can survive multiple cycles of erosion and deposition. By comparing the DA signatures with the DZ signatures, I present a method to better differentiate first cycle, igneous sediment contributions from recycled populations within a detrital signature. The results of these comparisons show that DA signatures provide ages of igneous input into the detrital record; these ages are also reflected in the DZ signature, thus signaling these DZ populations as igneous in origin. This study also investigates the potential for DA recycling and DA input from recycled strata. To address the second problem, I present a method using GIS software and the most recent map of Alaska to create simulated signatures that records input on a scale proportionate to the exposed surface area of each bedrock unit. In ~35% of the watersheds tested, the simulated signatures predict trends similar to the DZ signatures from the modern river sands, in 55% of the watersheds tested the simulated signatures missed one or more populations present in the DZ signature, and in 10% of watersheds tested, the simulated signature predicted trends very different from the DZ signatures. In cases where the DZ and simulated signatures do not match, I believe this represents influences of climate and relief and zircon fertility.
|
Page generated in 0.0319 seconds