Spelling suggestions: "subject:"all buildings aerodynamics"" "subject:"all buildings neurodynamics""
1 |
Estimation of wind-induced dynamic responses of tall buildings of non-ideal mode shapes by time domain analysisLi, Ai, 李愛 January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
|
2 |
Interference effects on wind loading of a group of tall buildings in close proximityZhao, Jianguang., 趙建光. January 2008 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
|
3 |
An investigation of the erosion technique for the evaluation of pedestrian level winds in the wind tunnelGrip, Robert Erik January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Robert Erik Grip. / M.S.
|
4 |
Numerical Investigation of Savonius Wind TurbinesRaja Mahith Yelishetty (15400922) 03 May 2023 (has links)
<p> </p>
<p>In this study, we aimed to explore the potential of integrating wind turbines into tall buildings to harness wind energy in urban areas. Advanced computer simulations will be used to analyze the complex wind patterns and turbulence around tall buildings. We will also study the optimization of wind turbine placement to maximize energy production. We focus on two types of wind turbines, the savonius and a modified savonius, using the Myring formula. We evaluated their performance in turbulent urban areas using computational fluid dynamics simulations. The simulations will also help us understand the wind flow behavior around tall buildings, informing wind turbine placement optimization.</p>
<p>Our findings contribute to the understanding of urban wind energy production. This may lead to further advancements in wind turbine design and application in urban environments, promoting sustainable and clean energy production in densely populated areas.</p>
<p>We also evaluate the economic feasibility of wind power as an energy source and its potential for commercial applications. Our study's insights are significant for wind energy research, urban planning, and sustainable energy production in cities.</p>
<p>To achieve our objectives, we will use state-of-the-art computational tools such as the ANSYS Fluent Student software and the Steady Reynolds Averaged Navier-Stokes (SRANS) K-ε model and K-ω SST models for simulating wind flow around tall buildings.</p>
<p>In summary, the goal of this research is to develop a methodology for integrating wind turbines into tall urban buildings to harness wind energy potential. This will contribute to the understanding of urban wind energy production and its economic feasibility for commercial applications.</p>
|
Page generated in 0.0874 seconds