• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An In Vivo Neurophysiological Model of Cortical Ischemia in the Rat

Srejic, Luka 22 September 2009 (has links)
Spontaneous and evoked potentials (EPs) were recorded with cross-cortical microelectrode arrays following partial occlusion of the MCA and ACA in urethane-anaesthetised rats. The control group received no occlusion, while the treatment group was injected with anti-stroke peptide Tat-NR2B9c 5min before ischemia. Spontaneous EEG power significantly decreased in the stroke-only group when compared to controls (p<0.001). A greater loss of EEG power was observed on anterior electrodes closer to the occluded area versus posterior contacts in stroke-only rats (p<0.05). The Tat-NR2B9c+stroke group lost significantly less power when compared to stroke-only animals (p<0.05). EP amplitude in the stroke-only group was significantly reduced following ischemia when compared to control and Tat-NR2B9c+stroke animals (p<0.001). Epileptiform discharges were observed in 8/10 untreated stroke rats and 3/5 stroke rats treated with Tat-NR2B9c. The characteristic features of spontaneous and evoked potentials validate this rat focal stroke model for in vivo testing of pharmacological agents.
2

An In Vivo Neurophysiological Model of Cortical Ischemia in the Rat

Srejic, Luka 22 September 2009 (has links)
Spontaneous and evoked potentials (EPs) were recorded with cross-cortical microelectrode arrays following partial occlusion of the MCA and ACA in urethane-anaesthetised rats. The control group received no occlusion, while the treatment group was injected with anti-stroke peptide Tat-NR2B9c 5min before ischemia. Spontaneous EEG power significantly decreased in the stroke-only group when compared to controls (p<0.001). A greater loss of EEG power was observed on anterior electrodes closer to the occluded area versus posterior contacts in stroke-only rats (p<0.05). The Tat-NR2B9c+stroke group lost significantly less power when compared to stroke-only animals (p<0.05). EP amplitude in the stroke-only group was significantly reduced following ischemia when compared to control and Tat-NR2B9c+stroke animals (p<0.001). Epileptiform discharges were observed in 8/10 untreated stroke rats and 3/5 stroke rats treated with Tat-NR2B9c. The characteristic features of spontaneous and evoked potentials validate this rat focal stroke model for in vivo testing of pharmacological agents.

Page generated in 0.0142 seconds