• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Taurine release and volume regulation in glial cells.

January 1991 (has links)
by Lam Ying Wan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / Acknowledgement --- p.5 / List of Abbreviations --- p.7 / Abstract --- p.10 / Chapter Chapter 1: --- Introduction --- p.13 / Chapter 1.1 --- Distribution and Biosynthesis of Taurine --- p.14 / Chapter 1.2 --- Physiological Functions of Taurine --- p.17 / Chapter 1.2.1 --- Interaction of Taurine and Calcium --- p.17 / Chapter 1.2.2 --- Neuroinhibitory action of Taurine --- p.18 / Chapter 1.2.3 --- Taurine as an Osmoeffector --- p.20 / Chapter 1.2.4 --- Integrative Model of Taurine Action --- p.22 / Chapter 1.3 --- Taurine and Volume Regulation in Astrocytes --- p.22 / Chapter 1.3.1 --- Response of Cells to Anisosmotic Media --- p.22 / Chapter 1.3.2 --- Mechanism of Regulatory Cell Volume Decrease --- p.23 / Chapter 1.3.3 --- Regulatory Volume Decrease (RVD) in Astrocytes --- p.25 / Chapter 1.3.4 --- Taurine and Volume Regulation in Astrocytes --- p.25 / Chapter 1.4 --- Ion Channels and Transporters in Astrocytes --- p.26 / Chapter 1.4.1 --- Potassium Channels --- p.26 / Chapter 1.4.2 --- Sodium Channels --- p.27 / Chapter 1.4.3 --- Chloride Channels --- p.27 / Chapter 1.4.4 --- Stretch-activated Ion Channels --- p.27 / Chapter 1.4.5 --- (KC1 + NaCl) Carrier --- p.27 / Chapter 1.4.6 --- Na+/H+ exchange --- p.28 / Chapter 1.4.7 --- C1-/HCO3- exchange --- p.28 / Chapter Chapter 2: --- Materials and Methods --- p.30 / Chapter 2.1 --- Cell Culture --- p.30 / Chapter 2.1.1 --- Preparation of Culture Medium --- p.30 / Chapter 2.1.2 --- Preparation of Phosphate Buffered Saline --- p.30 / Chapter 2.1.3 --- Cell Counting Method --- p.31 / Chapter 2.1.4 --- Culture of U373MG Human Astrocytoma Cells --- p.31 / Chapter 2.1.5 --- Culture of Primary Astrocytes --- p.32 / Chapter 2.2 --- Taurine Release Experiment --- p.32 / Chapter 2.2.1 --- Preparation of Physiological Salt Solution (PSS) --- p.32 / Chapter 2.2.2 --- Preparation of Hyposmotic Solution --- p.33 / Chapter 2.2.3 --- Preparation of Chloride Free Solution --- p.33 / Chapter 2.2.4 --- Preparation of Sodium Free Solution --- p.33 / Chapter 2.2.5 --- Preparation of Calcium Free Solution --- p.34 / Chapter 2.2.6 --- Preparation of High Potassium Solution --- p.34 / Chapter 2.2.7 --- Preparation of Urea containing PSS --- p.34 / Chapter 2.2.8 --- Assay of [3H]-Taurine Release --- p.34 / Chapter 2.2.9 --- Drug pretreatment --- p.35 / Chapter 2.2.10 --- Data Calculation --- p.35 / Chapter 2.3 --- Volume Determination --- p.36 / Chapter 2.3.1 --- Experimental procedure --- p.36 / Chapter 2.3.2 --- Drug pretreatment --- p.37 / Chapter 2.3.3 --- Data calculation --- p.40 / Chapter 2.4 --- Taurine Influx Experiment --- p.41 / Chapter 2.4.1 --- Experimental Procedure --- p.41 / Chapter 2.5 --- Drug Preparation --- p.42 / Results / Chapter Chapter 3: --- Hyposmolarity-Induced [3H]-Taurine Release --- p.45 / Chapter 3.1 --- Responses of Astrocytes to Hyposmotic Conditions --- p.45 / Chapter 3.1.1 --- Effect of Hyposmotic Medium on the Release of Preloaded [3H]-taurine in U373MG astrocytoma cell --- p.45 / Chapter 3.1.2 --- Time Course of the Hyposmolarity-induced [3H]-taurine Release --- p.49 / Chapter 3.1.3 --- Response of Primary Astrocytes to Hyposmotic Medium --- p.49 / Chapter 3.2 --- Effect of MK196 on Hyposmolarity-Induce Taurine Release --- p.52 / Chapter 3.3 --- Effects of Inhibitors of (NaCl+KCl) Cotransporter and C1- /HCO3- Anion Exchanger on Hyposmolarity-induced [3H]- taurine Release --- p.56 / Chapter 3.3.1 --- Effect of (NaCl + KC1) Cotransporter Inhibitors on Hyposmolarity-induced [3H]-taurine Release --- p.56 / Chapter 3.3.2 --- "Effects of two stilbene derivatives, SITS and DIDS,on hyposmolarity-induced [3H]-taurine release" --- p.56 / Chapter 3.3.3 --- "Effect of a Chloride Channel Blocker, Antracene-9- Carboxylate on Hyposmolarity-induced [3H]-taurine Release" --- p.57 / Chapter 3.3.4 --- Effect of MK473 on Hyposmolarity-induced [3H]-taurine Release --- p.58 / Chapter 3.4 --- Effect of Chloride Depletion on Hyposmolarity-induced [3H]- taurine Release --- p.58 / Chapter 3.4.1 --- Effect of Replacing Chloride with Nitrate --- p.58 / Chapter 3.4.2 --- Effect of Replacing Sodium Chloride with Sucrose --- p.59 / Chapter 3.4.3 --- Effect of Replacing Chloride with Gluconate --- p.59 / Chapter 3.5 --- Investigation of the Transduction Mechanism of Hyposmolarity- induced [3H]-taurine Release --- p.71 / Chapter 3.5.1 --- Effect of Depleting Extracellular Ca2+ --- p.71 / Chapter 3.5.2 --- Effect of Staurosporine on Hyposmolarity-induced [3H]- taurine Release --- p.71 / Chapter 3.6 --- Effect of SITS on the Swelling Process of U373 MG cells --- p.74 / Chapter 3.6.1 --- Regulatory Volume Decrease (RVD) in U373 MG Cells --- p.74 / Chapter 3.6.2 --- Effect of SITS on RVD in U373 MG Cells --- p.74 / Chapter 3.7 --- Effect of Hyposmotic Medium on Sodium-Independent Taurine Uptake in U373 MG Cells --- p.77 / Chapter Chapter 4 : --- Urea-Induced [3H]-Taurine Release --- p.80 / Chapter 4.1 --- Concentration Dependency of Urea-Induced Efflux of [3H]-taurine from U373 MG Cells --- p.80 / Chapter 4.2 --- Effect of MK 196 on the Urea-Induced [3H]-taurine Release from U373 MG Cells --- p.82 / Chapter 4.3 --- Effect of SITS on the Urea-induced [3H]-taurine Release from U373 MG Cells --- p.82 / Chapter Chapter 5: --- High Potassium-Induced Efflux of [3H]-taurine --- p.86 / Chapter 5.1 --- High Potassium Concentration Induced Release of [3H]-taurine from U373 MG Cells --- p.86 / Chapter 5.1.1 --- High Potassium Concentration Induced Release of [3H]- taurine --- p.86 / Chapter 5.1.2 --- Effect of the Concentration of HCO3- on High Potassium Induced Release [3H]-taurine Release --- p.87 / Chapter 5.2 --- Effect of MK 196 on High Potassium Induced [3H]-taurine Release in U373 MG --- p.87 / Chapter 5.3 --- Effect of (NaCl + KC1) Cotransporter Inhibitors on High Potassium Induced Taurine Release from U373 MG Cells --- p.91 / Chapter 5.3.1 --- Effect of Furosemide on High Potassium Induced [3H]- taurine Release --- p.91 / Chapter 5.3.2 --- Effect of Bumetanide on High Potassium Induced [3H]- taurine Release --- p.91 / Chapter 5.4 --- Effect of C1-/HCO3- Anion Exchanger Inhibitors on High Potassium Induced Release of [3H]-taurine from U373 MG Cells --- p.91 / Chapter 5.4.1 --- Effect of SITS on High Potassium Induced [3H]-taurine Release --- p.91 / Chapter 5.4.2 --- Effect of Antracene-9-Carboxylate on High Potassium Induced [3H]-taurine Release --- p.96 / Chapter 5.4.3 --- Effect of MK 473 on High Potassium Induced [3H]- taurine Release --- p.96 / Chapter 5.5 --- Effect of Chloride Depletion on High Potassium-Induced [3H]- taurine Release --- p.96 / Chapter 5.5.1 --- Effect of Replacing C1- by NO3- --- p.96 / Chapter 5.5.2 --- Effect of Replacing C1- by Gluconate --- p.96 / Chapter Chapter 6: --- Discussion --- p.102 / Chapter 6.1 --- Hyposmolarity Induced [3H]-taurine Release --- p.103 / Chapter 6.1.1 --- Hyposmolarity is the Key Stimulation for [3H]-taurine Release --- p.103 / Chapter 6.1.2 --- Hyposmolarity Induced [3H]-taurine Release and the C1- /HCO3- anion exchanger --- p.104 / Chapter 6.1.3 --- Comparision of the Hyposmolarity-induced Release of [3H]-taurine in U373 MG cells and primary astrocytes --- p.106 / Chapter 6.1.4 --- Comparision between the Hyposmolarity-induced Taurine Release and the Na+-independent Uptake for Taurine --- p.106 / Chapter 6.1.5 --- Transduction Mechanisms of Hyposmolarity-induced [3H]-taurine Release --- p.107 / Chapter 6.2 --- Urea-Induced Release of [3H]-taurine --- p.107 / Chapter 6.3 --- High Potassium-Induced [3H]-taurine Release --- p.108 / Chapter 6.3.1 --- Pharmacological Properties of High Potassium-induced [3H]-taurine Release --- p.108 / Chapter 6.3.2 --- Effect of Ionic Environment on High Potassium-Induced [3H]-taurine Release --- p.108 / Chapter 6.4 --- Mechanism of Swelling-Induced Taurine Release --- p.109 / Chapter 6.4.1 --- Involvement Stretched Activated Channel (SACs) in Swelling-Induced Taurine Release --- p.109 / Chapter 6.4.2 --- Involvement of the C1-/HCO3- Anion Exchanger in Swelling-Induced Taurine Release --- p.110 / Chapter 6.4.3 --- Possibility of Taurine as a Substrate of the C1-/HCO3- Anion Exchanger --- p.111 / Chapter 6.4.4 --- Conclusion --- p.114 / Chapter Chapter 7: --- Conclusion --- p.116 / References --- p.119
2

Effects of tumor necrosis factor on taurine transport in cultured rat astrocytes.

January 1993 (has links)
by Chang Chuen Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 125-140). / Acknowledgement --- p.4 / List of Abbreviations --- p.5 / Abstract --- p.7 / Chapter CHAPTER I --- INTRODUCTION --- p.10 / Chapter 1.1 --- Astrocytes in the Central Nervous System --- p.10 / Chapter 1.1.1 --- Characteristics of astrocytes --- p.10 / Chapter 1.1.2 --- Functional roles of astrocytes --- p.11 / Chapter 1.1.2.1 --- General functions of astrocytes --- p.11 / Chapter 1.1.2.2 --- Volume regulation of astrocytes in CNS injuries --- p.12 / Chapter 1.1.2.3 --- Immunological functions of astrocytes --- p.13 / Chapter 1.2 --- Taurine in the CNS --- p.15 / Chapter 1.2.1 --- The biochemistry and distribution of taurine --- p.15 / Chapter 1.2.2 --- Physiological functions of taurine in the CNS --- p.19 / Chapter 1.2.3 --- Uptake and release of taurine by cultured astrocytes --- p.20 / Chapter 1.2.3.1 --- Taurine uptake in astrocytes --- p.21 / Chapter 1.2.3.2 --- Taurine release in astrocytes --- p.22 / Chapter 1.3 --- Tumor necrosis factor in the CNS --- p.23 / Chapter 1.3.1 --- Characteristics of tumor necrosis factor --- p.23 / Chapter 1.3.2 --- Sources of TNF in the CNS --- p.25 / Chapter 1.3.3 --- Functions of TNF in the CNS --- p.26 / Chapter 1.3.4 --- TNF and signal transduction --- p.27 / Chapter 1.4 --- cGMP second messenger system in astrocyte --- p.29 / Chapter 1.4.1 --- cGMP as second messenger in astrocytes --- p.29 / Chapter 1.4.2 --- Post cGMP cascade effects --- p.30 / Chapter 1.5 --- The aims of this project --- p.30 / Chapter CHAPTER II --- METHODS --- p.34 / Chapter 2.1 --- Primary astrocytes culture --- p.34 / Chapter 2.1.1 --- Primary rat astrocytes culture --- p.34 / Chapter 2.1.2 --- Primary mouse astrocytes culture --- p.36 / Chapter 2.1.3 --- Culture of rat C6 glioma cell line --- p.36 / Chapter 2.1.4 --- Subculture of astrocytes in different media --- p.37 / Chapter 2.2 --- Taurine uptake and release assay --- p.39 / Chapter 2.2.1 --- Taurine uptake assay --- p.39 / Chapter 2.2.2 --- Taurine release assay --- p.41 / Chapter 2.3 --- The effects of TNF on taurine transport --- p.42 / Chapter 2.4 --- The effects of TNF on cell volume in astrocytes --- p.43 / Chapter 2.5 --- "The effects of TNF on amino acids, glucose and neurotransmitters uptake" --- p.43 / Chapter 2.5.1 --- The effects of TNF on amino acids uptake --- p.43 / Chapter 2.5.2 --- The effects of TNF on glucose uptake --- p.44 / Chapter 2.5.3 --- The effects of TNF on neurotransmitters uptake --- p.45 / Chapter 2.6 --- The effects of LPS on taurine uptake in astrocytes --- p.46 / Chapter 2.7 --- The effects of IFN-¡’ on taurine uptake in astrocytes --- p.46 / Chapter 2.8 --- The effects of PMA on taurine uptake in astrocytes --- p.47 / Chapter 2.9 --- "The effects of TNF on thymidine, uridine and leucine incorporation in astrocytes" --- p.47 / Chapter 2.10 --- The effects of TNF on basal level of cGMP in astrocytes --- p.48 / Chapter 2.11 --- The effects of TNF on protein phosphorylation in astrocytes --- p.49 / Chapter 2.12 --- The effects of TNF on calcium uptake in astrocytes --- p.50 / Chapter CHAPTER III --- RESULTS --- p.51 / Chapter 3.1 --- The effects of TNF on taurine transport in cultured rat astrocytes --- p.51 / Chapter 3.1.1 --- The effects of TNF on [3H]-taurine uptake -time course study --- p.52 / Chapter 3.1.2 --- The effects of TNF on the kinetic parameters of the taurine uptake system --- p.54 / Chapter 3.1.3 --- The effects of TNF concentration on taurine uptake --- p.63 / Chapter 3.1.4 --- The effects of TNF exposure time on taurine uptake --- p.65 / Chapter 3.1.5 --- The effects of TNF on cell volume change in astrocytes --- p.67 / Chapter 3.1.6 --- "Comparison of the effects of TNF on taurine uptake amongst cultured primary rat astrocytes, primary mouse astrocytes and C6 glioma cell line" --- p.69 / Chapter 3.1.7 --- The effects of TNF on taurine release --- p.71 / Chapter 3.1.8 --- The specificity of the effects of TNF on taurine uptake --- p.74 / Chapter 3.1.8.1 --- The effects of TNF on the uptake of amino acids and glucose in primary rat astrocytes --- p.79 / Chapter 3.1.8.2 --- The effects of TNF on neurotransmitters uptake --- p.87 / Chapter 3.1.9 --- The effects of LPS on taurine uptake in astrocytes --- p.92 / Chapter 3.1.10 --- The effects of IFN-¡’ on taurine uptake in astrocytes --- p.97 / Chapter 3.1.11 --- The effects of PMA on taurine uptake --- p.99 / Chapter 3.2 --- The effects of TNF on cell metabolism in rat astrocytes --- p.102 / Chapter 3.2.1 --- The effects of TNF on astrocyte proliferation --- p.102 / Chapter 3.2.2 --- The effects of TNF on RNA synthesis --- p.103 / Chapter 3.2.3 --- The effects of TNF on protein synthesis --- p.106 / Chapter 3.2.4 --- The effects of TNF on basal level of cGMP --- p.108 / Chapter 3.2.5 --- The effects of TNF on protein phosphorylation --- p.111 / Chapter 3.2.6 --- The effects of TNF on calcium uptake --- p.113 / Chapter Chapter IV --- DISCUSSION AND CONCLUSION --- p.116 / References --- p.125

Page generated in 0.056 seconds