• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paleoenvironmental Interpretations of the Lower Taylor Group, Olympus Range area, southern Victoria Land, Antarctica

Gilmer, Greer Jessie January 2008 (has links)
The Devonian Taylor Group, in the Olympus Range area, southern Victoria Land (SVL), Antarctica, is separated from the basement by a regional nonconformity (Kukri Erosion Surface). A second localized unconformity within the Taylor Group called the Heimdall Erosion Surface separates the New Mountain Sandstone and older units from the younger Altar Mountain Formation. The depositional environment of the New Mountain Sandstone has long been under contention. The New Mountain Sandstone Formation is a predominantly quartzose cross-bedded sandstone. Its newly defined Mt Jason Member is a coarse arkosic small scale cross-bedded pebbly sandstone that grades up section into the rest of the quartzose New Mountain Sandstone with large scale cross beds. The New Mountain Sandstone has been divided into five lithofacies including the Basal Conglomerate Lithofacies, Pebbly Sandstone Lithofacies, Granule Cross-bedded Lithofacies, Pinstripe Cross-bedded Lithofacies and Cross-bedded Sandstone Lithofacies. Deposition was in a shoreface environment with minor coastal aeolian deposition. The environment changed from upper shoreface to lower shoreface up section, forming transgressive to highstand systems tracts. The Heimdall Erosion Surface truncates the Cross-bedded Sandstone Lithofacies and the Pinstripe Cross-bedded Lithofacies and was formed due to relative sea level fall leading to exposure and erosion of underlying sedimentary and basement rocks. It forms a type 1 sequence boundary. The New Mountain Sandstone was partially or totally lithified before erosion as shown by the jagged morphology of the eroded cross beds on the surface. It is not known when cementation of the NMS took place or how much of the formation has been eroded. The Heimdall Erosion Surface and Kukri Erosion Surface converge locally due to erosion on the Heimdall Erosion Surface and relief on the Kukri Erosion Surface. The Heimdall Erosion Surface became a shore platform and the site of deposition as relative sea level rose. The Altar Mountain Formation with its Odin Member is a cross-bedded, massive and bedded feldspathic and quartzose sandstone that fines up section and is deposited on the erosion surface. The Altar Mountain Formation is divided into four lithofacies including the Conglomerate Lithofacies, Trough Cross-bedded Lithofacies, Cross-bedded Bioturbated Lithofacies and Bedded Fine Lithofacies. Deposition was in a shoreface environment, changing up section to an inner shelf environment with minor estuarine/tidal influence near the top of the section forming transgressive to highstand to regressive system tracts. The sedimentary rocks are derived mainly from the Granite Harbour Intrusives and Koettlitz Group, which underlie the sandstones, but were exposed elsewhere in SVL. The sandstone clasts within the Conglomerate Lithofacies could be derived from underlying older Taylor Group rocks or exotic sources from outside the field area. Correlation with data from adjacent areas suggests deposition of the New Mountain Sandstone occurred in a shallow sea that existed from the Olympus Range, southwards into the Asgard Range and included Vashka Crag. The area around Sponsors Peak and to the north was exposed and supplying feldspathic and quartzose sediment and pebbles into the depositional basin. As relative sea level fell due to either tectonic uplift or eustatic processes a large area of southern Victoria Land was exposed including the Olympus and Asgard Ranges and Bull Pass-St Johns Range area. This lead to erosion of the New Mountain Formation and basement rocks. Deposition of the New Mountain Sandstone continued further south shown by the gradational contact between it and the overlying Altar Mountain Formation. Relative sea level rise led to deposition of the Altar Mountain Formation. Shallow seas once more dominated the southern Victoria Land with deltas in the east (in the Bull Pass-St Johns Range area) feeding feldspathic sediment into the depositional basin (Odin Member). Further sea level rise drowned the delta region and a shallow marine to inner shelf environment led to deposition of the rest of the Altar Mountain Formation.
2

The Lower Taylor Group: Taylor and Wright Valleys, southern Victoria Land, Antarctica; Paleoenvironmental Interpretations and Sequence Stratigraphy

O'Toole, Timothy Finn January 2010 (has links)
The Devonian Taylor Group (the lower Beacon Supergroup), in the Taylor and Wright Valleys, southern Victoria Land (SVL), Antarctica, is separated from basement by a regional nonconformity, the Kukri Erosion Surface. Thereafter the Taylor Group sediments, observed in this thesis, are affected by two localized unconformities; the Windy Gully Erosion Surface, separating the Terra Cotta Siltstone Formation (TCzst) and older units from the younger overlying New Mountain Sandstone; and the Heimdall Erosion Surface (HES), separating the New Mountain Sandstone Formation (NMSst) and older units from the overlying Altar Mountain Formation. The depositional environments of the Windy Gully Sandstone, New Mountain Sandstone and Altar Mountain Formations have long been under debate. The Kukri Erosion Surface (KES) truncates the crystalline basement and separates the basement rock from the overlying Beacon Supergroup. Interpretation of the erosion surface characteristics and the directly overlying basal conglomerate lithofacies (WG-BCL) suggest a high relief rocky shore platform environment during a sustained and significant relative sea level fall. The environment has been suggested to be similar to what is currently seen on the West Coast, New Zealand today. The Windy Gully Sandstone Formation directly overlies the KES and consists of a basal conglomerate (WG-BCL) followed by moderately to well sorted tabular and trough cross bedded felds- to subfeldsarenites. At one location an interbedded siltstone and cross bedded sandstone lithofacies was observed and interpreted as a tidal flat. Overall interpretation of the WGSst suggests continued progradation from a rocky shore platform (WG-BCL) to a series low angle beach, to shallow marine, and back to low angle beach environments. This occurred during a relative sea level rise. Shallowing of the water column produced a gradational relationship with the Terra Cotta Siltstone Formation (TCzst).. The fine to very fine sandy mottled, well laminated siltstones moving to very fine fissile dark siltstones suggest a progression from sandy estuarine to a mud flat environment. The Terra Cotta Siltsone is truncated by the Windy Gully Erosion Surface The Windy Gully Erosion Surface is observed in the Handsley Valley by the presence of TCzst rip-up clasts in the directly overlying New Mountain Sandstone Formation. Elsewhere the horizon is either very sharp or has desiccation cracks present suggesting a cessation of deposition and subaerial exposure respectively. This suggests a small relative fall in sea level with only localized erosion. The New Mountain Sandstone Formation (NMSst) predominantly consists of a series of low angle tabular and higher angle trough cross beds. It has a subfeldsarenite base that progressively becomes a pure quartz arenites. Interpretation suggests an initial beach environment with rejuvenated sediments moving to quartzose shallow marine and back to beach environments. This represents a relative sea level rise with continued progradation The NMSst is truncated in the north by the HES forming a characteristic saw tooth pattern in the cross bedded sandstones; elsewhere the HES is represented by a feldspathic influx moving into the Altar Mountain Formation. The HES was formed due to a significant relative sea level fall leading to exposure and erosion of lithified NMSst cross beds in the north but continuation of deposition in the south. The Altar Mountain Formation consists of tabular and trough cross bedded subfields- to feldsarenites. The Odin Arkose Member directly overlying the HES is a granule to cobble conglomerate in the north where the HES is erosional and very coarse sand to granule feldsarenite in the south where the HES is conformable. This has been interpreted as a pebbly shore platform to coarse sandy to granular beach environment. The following Altar Mountain Formation is interpreted as a continuation of medium to coarse sandy beach environments with influxes of coarser sediments and possibly moving into shallow marine in places. Sequence stratigraphy identifies three stratigraphic sequences: S1, the Windy Gully Sandstone and Terra Cotta Siltstone Formations; S2, the New Mountain Sandstone Formation; and S3, the Altar Mountain Formation. The first two sequences (S1&S2) show a clear progression through transgression to a high stand systems tract through regression to a low stand systems tract. The Altar Mountain Formation follows a very similar trend but due to the lack of time and data the above measures have been speculated. Zircon age dating suggests the source of the sediments in the area come from the Neoproterozic Skelton Group and the DV2a Granite Harbour Intrusives, both directly underlying the sandstones but are exposed elsewhere in SVL. Laminated sandstone clasts within the New Mountain Basal Conglomerate Lithofacies (NM-BCL) are suggested to be sourced from recycled sediments directly below. Other exotic clasts are also observed in the lithofacies are of unknown origin.
3

Paleoenvironmental Interpretations of the Lower Taylor Group, Olympus Range area, southern Victoria Land, Antarctica

Gilmer, Greer Jessie January 2008 (has links)
The Devonian Taylor Group, in the Olympus Range area, southern Victoria Land (SVL), Antarctica, is separated from the basement by a regional nonconformity (Kukri Erosion Surface). A second localized unconformity within the Taylor Group called the Heimdall Erosion Surface separates the New Mountain Sandstone and older units from the younger Altar Mountain Formation. The depositional environment of the New Mountain Sandstone has long been under contention. The New Mountain Sandstone Formation is a predominantly quartzose cross-bedded sandstone. Its newly defined Mt Jason Member is a coarse arkosic small scale cross-bedded pebbly sandstone that grades up section into the rest of the quartzose New Mountain Sandstone with large scale cross beds. The New Mountain Sandstone has been divided into five lithofacies including the Basal Conglomerate Lithofacies, Pebbly Sandstone Lithofacies, Granule Cross-bedded Lithofacies, Pinstripe Cross-bedded Lithofacies and Cross-bedded Sandstone Lithofacies. Deposition was in a shoreface environment with minor coastal aeolian deposition. The environment changed from upper shoreface to lower shoreface up section, forming transgressive to highstand systems tracts. The Heimdall Erosion Surface truncates the Cross-bedded Sandstone Lithofacies and the Pinstripe Cross-bedded Lithofacies and was formed due to relative sea level fall leading to exposure and erosion of underlying sedimentary and basement rocks. It forms a type 1 sequence boundary. The New Mountain Sandstone was partially or totally lithified before erosion as shown by the jagged morphology of the eroded cross beds on the surface. It is not known when cementation of the NMS took place or how much of the formation has been eroded. The Heimdall Erosion Surface and Kukri Erosion Surface converge locally due to erosion on the Heimdall Erosion Surface and relief on the Kukri Erosion Surface. The Heimdall Erosion Surface became a shore platform and the site of deposition as relative sea level rose. The Altar Mountain Formation with its Odin Member is a cross-bedded, massive and bedded feldspathic and quartzose sandstone that fines up section and is deposited on the erosion surface. The Altar Mountain Formation is divided into four lithofacies including the Conglomerate Lithofacies, Trough Cross-bedded Lithofacies, Cross-bedded Bioturbated Lithofacies and Bedded Fine Lithofacies. Deposition was in a shoreface environment, changing up section to an inner shelf environment with minor estuarine/tidal influence near the top of the section forming transgressive to highstand to regressive system tracts. The sedimentary rocks are derived mainly from the Granite Harbour Intrusives and Koettlitz Group, which underlie the sandstones, but were exposed elsewhere in SVL. The sandstone clasts within the Conglomerate Lithofacies could be derived from underlying older Taylor Group rocks or exotic sources from outside the field area. Correlation with data from adjacent areas suggests deposition of the New Mountain Sandstone occurred in a shallow sea that existed from the Olympus Range, southwards into the Asgard Range and included Vashka Crag. The area around Sponsors Peak and to the north was exposed and supplying feldspathic and quartzose sediment and pebbles into the depositional basin. As relative sea level fell due to either tectonic uplift or eustatic processes a large area of southern Victoria Land was exposed including the Olympus and Asgard Ranges and Bull Pass-St Johns Range area. This lead to erosion of the New Mountain Formation and basement rocks. Deposition of the New Mountain Sandstone continued further south shown by the gradational contact between it and the overlying Altar Mountain Formation. Relative sea level rise led to deposition of the Altar Mountain Formation. Shallow seas once more dominated the southern Victoria Land with deltas in the east (in the Bull Pass-St Johns Range area) feeding feldspathic sediment into the depositional basin (Odin Member). Further sea level rise drowned the delta region and a shallow marine to inner shelf environment led to deposition of the rest of the Altar Mountain Formation.

Page generated in 0.0254 seconds