• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 11
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modelování elektrických obvodů ve specializovaném paralelním systému / Electric Circuits Simulations in a Specialized Parallel System

Janko, Roman January 2013 (has links)
This work provides an overview of methods for the numerical solution of differential equations. Options of their parallelization, a division of computational operations on multiple microprocessors, are provided with emphasis placed on the Taylor series. The next part of the work is devoted to the description of a specialized parallel system, which was design to fast solving of these equations. Differential equations are appropriate to describe electrical circuits. An important characteristic of each circuit is its behavior in the frequency domain. The aim of this thesis was to design and implement a program which investigate frequency characteristics of AC circuits. A method for analyzing a circuit and automatically assembling corresponding equations is presented. These differential equations are then solved in TKSL. At the end of this work a time consumption is evaluated and compared with Matlab.
32

Analýza stiff soustav diferenciálních rovnic / Stiff Systems Analysis

Šátek, Václav January 2012 (has links)
The solving of stiff systems is still a contemporary sophisticated problem. The basic problem is the absence of precise definition of stiff systems. A question is also how to detect the stiffness in a given system of differential equations. Implicit numerical methods are commonly used for solving stiff systems. The stability domains of these methods are relatively large but the order of them is low.   The thesis deals with numerical solution of ordinary differential equations, especially numerical calculations using Taylor series methods. The source of stiffness is analyzed and the possibility how to reduce stiffness             in systems of ordinary differential equations (ODEs) is introduced. The possibility of detection stiff systems using explicit Taylor series terms is analyzed. The stability domains of explicit and implicit Taylor series are presented. The solutions of stiff systems using implicit Taylor series method are presented in many examples. The multiple arithmetic must be used in many cases. The new suitable parallel algorithm based on implicit Taylor series method with recurrent calculation of Taylor series terms and Newton iteration method (ITMRN) is proposed.
33

Non-Smooth SDEs and Hyperbolic Lattice SPDEs Expansions via the Quadratic Covariation Differentiation Theory and Applications

Ashu, Tom A. 20 July 2017 (has links)
No description available.
34

Rigorous defect control and the numerical solution of ordinary differential equations

Ernsthausen, John+ 10 1900 (has links)
Modern numerical ordinary differential equation initial-value problem (ODE-IVP) solvers compute a piecewise polynomial approximate solution to the mathematical problem. Evaluating the mathematical problem at this approximate solution defines the defect. Corless and Corliss proposed rigorous defect control of numerical ODE-IVP. This thesis automates rigorous defect control for explicit, first-order, nonlinear ODE-IVP. Defect control is residual-based backward error analysis for ODE, a special case of Wilkinson's backward error analysis. This thesis describes a complete software implementation of the Corless and Corliss algorithm and extensive numerical studies. Basic time-stepping software is adapted to defect control and implemented. Advances in software developed for validated computing applications and advances in programming languages supporting operator overloading enable the computation of a tight rigorous enclosure of the defect evaluated at the approximate solution with Taylor models. Rigorously bounding a norm of the defect, the Corless and Corliss algorithm controls to mathematical certainty the norm of the defect to be less than a user specified tolerance over the integration interval. The validated computing software used in this thesis happens to compute a rigorous supremum norm. The defect of an approximate solution to the mathematical problem is associated with a new problem, the perturbed reference problem. This approximate solution is often the product of a numerical procedure. Nonetheless, it solves exactly the new problem including all errors. Defect control accepts the approximate solution whenever the sup-norm of the defect is less than a user specified tolerance. A user must be satisfied that the new problem is an acceptable model. / Thesis / Master of Science (MSc) / Many processes in our daily lives evolve in time, even the weather. Scientists want to predict the future makeup of the process. To do so they build models to model physical reality. Scientists design algorithms to solve these models, and the algorithm implemented in this project was designed over 25 years ago. Recent advances in mathematics and software enabled this algorithm to be implemented. Scientific software implements mathematical algorithms, and sometimes there is more than one software solution to apply to the model. The software tools developed in this project enable scientists to objectively compare solution techniques. There are two forces at play; models and software solutions. This project build software to automate the construction of the exact solution of a nearby model. That's cool.
35

Modelling water droplet movement on a leaf surface

Oqielat, Moa'ath Nasser January 2009 (has links)
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.
36

Solving Partial Differential Equations by Taylor Meshless Method / La modélisation avancée et la simulation en utilisant la série de Taylor

Yang, Jie 22 January 2018 (has links)
Le but de cette thèse est de développer une méthode numérique simple, robuste, efficace et précise pour résoudre des problèmes d'ingénierie de grande taille à partir de la méthode Taylor Meshless (TMM) et fournir de nouvelles idées principales de TMM est d'utiliser comme fonctions de forme des polynômes d'ordre élevé qui sont des solutions approchées de l'EDP. Ainsi la discrétisation ne concerne que la frontière. Les coefficients de ces fonctions de forme sont obtenus en discrétisant les conditions aux limites par des procédures de collocation associées à la méthode des moindres carrés. TMM est alors une véritable méthode sans maillage sans processus d'intégration, les conditions aux limites étant obtenues par collocation. Les principales contributions de cette thèse sont les suivantes: 1) Basé sur TMM, un algorithme général et efficace a été développé pour résoudre des EDP elliptiques tridimensionnelles; 2) Trois techniques de couplage pour des résolutions par morceaux ont été discutées dans des cas de problèmes à grande échelle: la méthode de collocation par les moindres carrés et deux méthodes de couplage basées sur les multiplicateurs de Lagrange; 3) Une méthode numérique générale pour résoudre les EDP non-linéaires a été proposée en combinant la méthode de Newton, la TMM et la technique de différentiation automatique. 4) Pour résoudre des problèmes avec un bord non régulier, des solutions singulières satisfaisant l'équation de contrôle sont introduites comme des fonctions de forme complémentaires, ce qui fournit une base théorique pour la résolution de problèmes singuliers / Based on Taylor Meshless Method (TMM), the aim of this thesis is to develop a simple, robust, efficient and accurate numerical method which is capable of solving large scale engineering problems and to provide a new idea for the follow-up study on meshless methods. To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial Differential Equations (PDEs). The main idea of TMM is to use high order polynomials as shape functions which are approximated solutions of the PDE and the discretization concerns only the boundary. To solve the unknown coefficients, boundary conditions are accounted by collocation procedures associated with least-square method. TMM that needs only boundary collocation without integration process, is a true meshless method. The main contributions of this thesis are as following: 1) Based on TMM, a general and efficient algorithm has been developed for solving three-dimensional PDEs; 2) Three coupling techniques in piecewise resolutions have been discussed and tested in cases of large-scale problems, including least-square collocation method and two coupling methods based on Lagrange multipliers; 3) A general numerical method for solving non-linear PDEs has been proposed by combining Newton Method, TMM and Automatic Differentiation technique; 4) To apply TMM for solving problems with singularities, the singular solutions satisfying the control equation are introduced as complementary shape functions, which provides a theoretical basis for solving singular problems
37

Komplexná analýza požívaných výnosových vzťahov u dlhopisov / Comprehensive study of yield in bond analysis

Krajčíková, Lucia January 2015 (has links)
This thesis covers detailed analysis of bond pricing function. It focuses on connections between mathematical definitions and financial practice and it points out advantages and drawbacks of currently used function. Well known properties of this function are extended to negative internal rate of return values. This topic is further discussed with internal rate of return polynomial equations solving. Taylor series approximation is also shown regarding duration and convexity of bonds.
38

Automatické řízení výpočtu ve specializovaném výpočetním systému / Specialized Computer System Automatic Control

Opálka, Jan January 2016 (has links)
This work deals with the automatic control of calculations of specialized system. The reader is acquainted with the numerical solution of differential equations by Taylor series method and numerical integrators. The practical aim of this work is to analyze parallel characteristics of Taylor series method, specification of parallel math operations and design of control of this operations.
39

Simulace CMOS VLSI obvodů / CMOS VLSI Circuits Simulation

Šťastná, Hilda January 2017 (has links)
This diploma thesis deals with processes of electrical circuits calculations in the last years' worldwide standards like Dymola, MATLAB, Maple or SPICE applications. Circuits calculations are linked with methods for solving linear differential equations, used in this work also by verification of functionality of designed models for CMOS inverter, CMOS NAND, CMOS NOR. Numerical integration method in combination with Taylor series is a suitable method also for parallel calculations of CMOS VLSI circuits. CMOS circuits simulation was implemented with this method in applications in MATLAB language, solving circuits, represented by differential equations. Functionality of the applications was verified by some real examples. Significant acceleration of calculations using Taylor series compared to other methods is an important factor in choosing methods used in circuit simulations.
40

Paralelní řešení parciálních diferenciálnich rovnic / Partial Differential Equations Parallel Solutions

Čambor, Michal January 2011 (has links)
This thesis deals with the concepts of numerical integrator using floating point arithmetic for solving partial differential equations. The integrator uses Euler method and Taylor series. Thesis shows parallel and serial approach to computing with exponents and significands. There is also a comparison between modern parallel systems and the proposed concepts.

Page generated in 0.0524 seconds