• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Specific and redundant roles of the Tead family of transcription factors in myogenic differentiation of C2C12 cells and primary myoblasts in vitro / Les rôles spécifiques et redondants de la famille Tead de facteurs de transcription dans la différenciation myogénique des cellules C2C12 et myoblastes primaires in vitro

Joshi, Shilpy 26 November 2015 (has links)
La famille Tead de facteurs de transcription reconnaît l'élément MCAT trouvé dans le promoteur de gènes spécifiques au muscle. L'analyse génétique de leur fonction dans la différenciation musculaire a révélé difficile en raison de la redondance susceptible parmi les membres de la famille. Dans cette étude, nous avons utilisé le silencing siRNA médiation pour aborder le rôle des facteurs TEAD dans la différenciation des myoblastes primaire.Contrairement aux cellules C2C12 où Tead4 joue un rôle essentiel, son silence dans les myoblastes primaires a eu peu d'effet sur leur différenciation. Silence de facteurs individuels TEAD n'a eu aucun effet significatif sur la différenciation des myoblastes primaires, alorsque le silençage combinatoire a conduit à l'inhibition de leur différenciation indiquant laredondance parmi ces facteurs. Dans les cellules C2C12 aussi, combinatoire silençageTead eu des effets beaucoup plus puissants que de faire taire Tead4 seule indiquant une contribution des autres Teads dans ce processus. En intégrant Tead1 et les données Tead4ChIP-Seq avec les données d'ARN-Seq suivante combinatoire Tead1 / 4 silencieux, nous identifions ensembles distincts, mais qui se chevauchent de gènes Tead réglementés dansles deux cellules C2C12 myoblastes et primaires. Nous avons également intégré les / 4 données Tead1 ChIP-seq avec des ensembles de données publiques sur Myog et MYOD1ChIP-Seq et chromatine modifications à identifier une série d'éléments de régulation actifsliés par des facteurs TEAD seul ou avec Myog et MYOD1. Ces données disséquer les fonctions spécifiques et combinatoires de ces facteurs de transcription dans les réseaux derégulation de le differentiation musculaire. / The Tead family of transcription factors recognise the MCAT element found in thepromoters of muscle-specific genes. Genetic analysis of their function in muscledifferentiation has proved elusive likely due to redundancy amongst the family members.We previously used shRNA-mediated silencing to show that loss of Tead4 function resultedin abnormal differentiation characterised by the formation of shortened myotubes. ChIP-chipcoupled to RNA-seq data identified a set of potential target genes that are either activatedor repressed by Tead4 during differentiation. In this study, we have used siRNA-mediatedsilencing to address the role of the Tead factors in primary myoblast differentiation. Incontrast to C2C12 cells where Tead4 plays a critical role, its silencing in primary myoblastshad little effect on their differentiation. Silencing of individual Tead factors had no significanteffect on primary myoblast differentiation, whereas combinatorial silencing led to inhibitionof their differentiation indicating redundancy amongst these factors. In C2C12 cells also,combinatorial Tead silencing had much more potent effects than silencing of Tead4 aloneindicating a contribution of other Teads in this process. By integrating Tead1 and Tead4ChIP-seq data with RNA-seq data following combinatorial Tead1/4 silencing, we identifydistinct but overlapping sets of Tead regulated genes in both C2C12 cells and primarymyoblasts. We also integrated the Tead1/4 ChIP-seq data with public data sets on Myogand Myod1 ChIP-seq and chromatin modifications to identify a series of active regulatoryelements bound by Tead factors alone or together with Myog and Myod1. These datadissect the specific and combinatorial functions of these transcription factors in muscledifferentiation regulatory networks.
2

Transcriptional Control of Metabolism and the Response to Ischemia in Muscle

Teng, Allen C. T. 13 December 2011 (has links)
Skeletal muscle is one of the largest tissues in humans and provides many pivotal functions to support life. Abnormality in skeletal muscle functions can lead to disease. For example, insulin resistance in skeletal muscle leads to type II diabetes. The underlying mechanisms that control energy balance in skeletal muscle remain largely elusive, especially at the genetic level. Here in the second chapter, I showed that MyoD mediated the transcriptional regulation of ACSL5, a mitochondrial protein, in C2C12 myoblasts via two E-box elements. A SNP rs2419621 (T) created a de novo E-box that together with the two pre-existing proximal E-boxes strongly enhances ACSL5 expression in both CV1 and C2C12 cells. In the third chapter, I identified a novel VGLL4-interacting protein IRF2BP2 and verified the interaction with co-immunoprecipitation and mammalian two-hybrid assays. Functionally, overexpression of IRF2BP2 and transcription factor TEAD1 activates mouse VEGF-A promoter in CV1 cells and enhances the biosynthesis of VEGF-A in C2C12 myoblasts. In vivo studies showed that ischemia induced the expression of IRF2BP2 by more than three fold, suggesting that IRF2BP2 could play a pivotal role during tissue ischemia. IRF2BP2 is a nuclear protein in both mouse cardiac myocytes and C2C12 myoblasts as demonstrated by immunohistochemistry and immunocytochemistry, respectively. Therefore, I sought to delineate the mechanism for the nuclear shuttling of IRF2BP2 in the fourth chapter. With various DNA alternations, I mapped the NLS to an evolutionarily conserved sequence 354ARKRKPSP361 in IRF2BP2. Deletion of the positively charged amino acids resulted in the abolishment of the NLS signal. Next, I showed that phosphorylation of serine 360 (S360) mediates the nuclear import of the protein. Whereas an alanine substitution (S360A) at the site resulted in perinuclear accumulation of the protein, an aspartic acid substitution (S360D) forced the nuclear accumulation. Nevertheless, the forced accumulation of the S360D mutant did not enhance the activation of VEGF-A promoter in CV1 cells as did the wild-type protein. My studies revealed two novel mechanisms by which skeletal muscle could harvest energy, thus providing new insight into the energy metabolism in skeletal muscle
3

Transcriptional Control of Metabolism and the Response to Ischemia in Muscle

Teng, Allen C. T. 13 December 2011 (has links)
Skeletal muscle is one of the largest tissues in humans and provides many pivotal functions to support life. Abnormality in skeletal muscle functions can lead to disease. For example, insulin resistance in skeletal muscle leads to type II diabetes. The underlying mechanisms that control energy balance in skeletal muscle remain largely elusive, especially at the genetic level. Here in the second chapter, I showed that MyoD mediated the transcriptional regulation of ACSL5, a mitochondrial protein, in C2C12 myoblasts via two E-box elements. A SNP rs2419621 (T) created a de novo E-box that together with the two pre-existing proximal E-boxes strongly enhances ACSL5 expression in both CV1 and C2C12 cells. In the third chapter, I identified a novel VGLL4-interacting protein IRF2BP2 and verified the interaction with co-immunoprecipitation and mammalian two-hybrid assays. Functionally, overexpression of IRF2BP2 and transcription factor TEAD1 activates mouse VEGF-A promoter in CV1 cells and enhances the biosynthesis of VEGF-A in C2C12 myoblasts. In vivo studies showed that ischemia induced the expression of IRF2BP2 by more than three fold, suggesting that IRF2BP2 could play a pivotal role during tissue ischemia. IRF2BP2 is a nuclear protein in both mouse cardiac myocytes and C2C12 myoblasts as demonstrated by immunohistochemistry and immunocytochemistry, respectively. Therefore, I sought to delineate the mechanism for the nuclear shuttling of IRF2BP2 in the fourth chapter. With various DNA alternations, I mapped the NLS to an evolutionarily conserved sequence 354ARKRKPSP361 in IRF2BP2. Deletion of the positively charged amino acids resulted in the abolishment of the NLS signal. Next, I showed that phosphorylation of serine 360 (S360) mediates the nuclear import of the protein. Whereas an alanine substitution (S360A) at the site resulted in perinuclear accumulation of the protein, an aspartic acid substitution (S360D) forced the nuclear accumulation. Nevertheless, the forced accumulation of the S360D mutant did not enhance the activation of VEGF-A promoter in CV1 cells as did the wild-type protein. My studies revealed two novel mechanisms by which skeletal muscle could harvest energy, thus providing new insight into the energy metabolism in skeletal muscle
4

Transcriptional Control of Metabolism and the Response to Ischemia in Muscle

Teng, Allen C. T. 13 December 2011 (has links)
Skeletal muscle is one of the largest tissues in humans and provides many pivotal functions to support life. Abnormality in skeletal muscle functions can lead to disease. For example, insulin resistance in skeletal muscle leads to type II diabetes. The underlying mechanisms that control energy balance in skeletal muscle remain largely elusive, especially at the genetic level. Here in the second chapter, I showed that MyoD mediated the transcriptional regulation of ACSL5, a mitochondrial protein, in C2C12 myoblasts via two E-box elements. A SNP rs2419621 (T) created a de novo E-box that together with the two pre-existing proximal E-boxes strongly enhances ACSL5 expression in both CV1 and C2C12 cells. In the third chapter, I identified a novel VGLL4-interacting protein IRF2BP2 and verified the interaction with co-immunoprecipitation and mammalian two-hybrid assays. Functionally, overexpression of IRF2BP2 and transcription factor TEAD1 activates mouse VEGF-A promoter in CV1 cells and enhances the biosynthesis of VEGF-A in C2C12 myoblasts. In vivo studies showed that ischemia induced the expression of IRF2BP2 by more than three fold, suggesting that IRF2BP2 could play a pivotal role during tissue ischemia. IRF2BP2 is a nuclear protein in both mouse cardiac myocytes and C2C12 myoblasts as demonstrated by immunohistochemistry and immunocytochemistry, respectively. Therefore, I sought to delineate the mechanism for the nuclear shuttling of IRF2BP2 in the fourth chapter. With various DNA alternations, I mapped the NLS to an evolutionarily conserved sequence 354ARKRKPSP361 in IRF2BP2. Deletion of the positively charged amino acids resulted in the abolishment of the NLS signal. Next, I showed that phosphorylation of serine 360 (S360) mediates the nuclear import of the protein. Whereas an alanine substitution (S360A) at the site resulted in perinuclear accumulation of the protein, an aspartic acid substitution (S360D) forced the nuclear accumulation. Nevertheless, the forced accumulation of the S360D mutant did not enhance the activation of VEGF-A promoter in CV1 cells as did the wild-type protein. My studies revealed two novel mechanisms by which skeletal muscle could harvest energy, thus providing new insight into the energy metabolism in skeletal muscle
5

Transcriptional Control of Metabolism and the Response to Ischemia in Muscle

Teng, Allen C. T. January 2011 (has links)
Skeletal muscle is one of the largest tissues in humans and provides many pivotal functions to support life. Abnormality in skeletal muscle functions can lead to disease. For example, insulin resistance in skeletal muscle leads to type II diabetes. The underlying mechanisms that control energy balance in skeletal muscle remain largely elusive, especially at the genetic level. Here in the second chapter, I showed that MyoD mediated the transcriptional regulation of ACSL5, a mitochondrial protein, in C2C12 myoblasts via two E-box elements. A SNP rs2419621 (T) created a de novo E-box that together with the two pre-existing proximal E-boxes strongly enhances ACSL5 expression in both CV1 and C2C12 cells. In the third chapter, I identified a novel VGLL4-interacting protein IRF2BP2 and verified the interaction with co-immunoprecipitation and mammalian two-hybrid assays. Functionally, overexpression of IRF2BP2 and transcription factor TEAD1 activates mouse VEGF-A promoter in CV1 cells and enhances the biosynthesis of VEGF-A in C2C12 myoblasts. In vivo studies showed that ischemia induced the expression of IRF2BP2 by more than three fold, suggesting that IRF2BP2 could play a pivotal role during tissue ischemia. IRF2BP2 is a nuclear protein in both mouse cardiac myocytes and C2C12 myoblasts as demonstrated by immunohistochemistry and immunocytochemistry, respectively. Therefore, I sought to delineate the mechanism for the nuclear shuttling of IRF2BP2 in the fourth chapter. With various DNA alternations, I mapped the NLS to an evolutionarily conserved sequence 354ARKRKPSP361 in IRF2BP2. Deletion of the positively charged amino acids resulted in the abolishment of the NLS signal. Next, I showed that phosphorylation of serine 360 (S360) mediates the nuclear import of the protein. Whereas an alanine substitution (S360A) at the site resulted in perinuclear accumulation of the protein, an aspartic acid substitution (S360D) forced the nuclear accumulation. Nevertheless, the forced accumulation of the S360D mutant did not enhance the activation of VEGF-A promoter in CV1 cells as did the wild-type protein. My studies revealed two novel mechanisms by which skeletal muscle could harvest energy, thus providing new insight into the energy metabolism in skeletal muscle
6

Rekombinantní příprava transkripčního faktoru TEAD. / Recombinant preparation of TEAD transcription factor.

Lišková, Růžena January 2016 (has links)
Recombinant preparation of TEAD transcription factor (abstract) The TEAD family transcription factors play an important role during devolopment of organisms, where their main purpose is to regulate organ size by activating expression of proteins involved in cell growth and differentiation and apoptosis inhibition. TEAD proteins activity is regulated by signalling pathways and interactions with coactivators. Disregulation of these mechanisms can lead to development of tumors, which is the reason why TEAD proteins became an interesting target for development of new anticancer drugs based on inhibiting their activity. There are several possibilities how to inhibit activity of a transcription factor including blocking its bond to DNA. To design a new drug that blocks transcription factors binding to DNA the structural basis of interaction of these two molecules has to be known first. In this thesis the DNA binding domain of human protein TEAD1 was prepared using the technique of recombinant expression in bacteria E. coli. Suitable conditions of protein production were found and the DNA binding domain of TEAD1 protein was purified so it will be possible to use it for structural analysis of its intraction with DNA.

Page generated in 0.0309 seconds