• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The standard model to the Planck scale

Allison, Kyle F. January 2014 (has links)
The lack of direct evidence for physics beyond the SM at the LHC has led some to reevaluate the need for such physics to solve the hierarchy problem. Instead, the notion that the SM, or something like it, is valid up to the Planck scale and that technical naturalness is sufficient for solving the hierarchy problem has been suggested. This thesis examines minimal extensions of the SM that address its phenomenological and theoretical shortcomings while avoiding new physics between the electroweak and Planck scales that introduces a hierarchy problem. This thesis first studies two issues with the vMSM - an extension of the SM by three right-handed neutrinos - and their possible solutions. The first issue is the tension between dark matter production in the nuMSM and constraints from the Lyman-alpha forest data. To avoid this tension, the vMSM is extended by a Higgs singlet &Phi; and neutrino dark matter is produced through the decays of &Phi; rather than through left-right neutrino mixing. It is shown that the hierarchical parameters of this model can arise from symmetries broken at or near the Planck scale for two specific examples: one in which &Phi; stabilizes the electroweak vacuum and one in which &Phi; is a light inflaton. The second issue pertains to Higgs &xi;-inflation. In the vMSM, a large non-minimal coupling &xi; of the Higgs to gravity gives inflation but leads to a possible violation of perturbative unitarity below the inflationary scale. A study of Higgs &xi;-inflation with M<sub>h</sub> &simeq; 125-126 GeV, for which the Higgs self-coupling &lambda; runs to small values near the Planck scale, is carried out. It is shown that small &lambda; can significantly reduce &xi; required for inflation, but &xi; cannot be small enough to address the possible unitarity issue. For small &lambda;, a new region of Higgs &xi;-inflation with a large tensor-to-scalar ratio r that is consistent with BICEP2 is discovered. This thesis then studies the technical naturalness and cosmology of a model that addresses the strong CP problem. It is shown that a classically scale invariant DFSZ invisible a&xi;on model with a Peccei-Quinn scalar S, whose couplings to the SM are ultra-weak, can solve the strong CP problem and generate electroweak symmetry breaking via the Coleman-Weinberg mechanism. The ultra-weak couplings of S are natural due to an underlying appro&xi;mate shift symmetry. The model contains a light pseudo-Goldstone dilaton that can be consistent with cosmological bounds while the a&xi;on can be the dark matter of the universe. Finally, a summary of the thesis is presented and future research topics are suggested.
2

Accidental Supersymmetry and the Naturalness of Codimension-2 Branes

Williams, Matthew R. 10 1900 (has links)
<p>This thesis addresses two separate naturalness issues which generically come to bear on physical theories with large extra dimensions, and so a gravity scale much lower than the Planck scale. The first is related to the observed stability of the proton, wherein we determine the relevant constraints on an additional gauge boson which conserves baryon number. Although several such proposals have been previously considered, our analysis is distinctive in its interest in lighter gauge boson masses (which naturally arise in such models), and in its focus on the dependence of constraints due to kinetic mixing effects. The second is related to the main purpose of large extra dimensions---namely, to address the smallness of the observed vacuum energy---wherein we compute the leading-order quantum corrections to the four-dimensional (4D) vacuum energy resulting from loops of extra-dimensional fields. We compute the contributions from bulk scalars (spin 0), fermions (spin 1/2), and gauge fields (spin 1) in a flux-stabilized, spheroidal extra-dimensional geometry whose rugby-ball shape is due to two codimension-2 branes---one at each pole. (We also obtain the corresponding beta functions for both bulk and brane operators.) These results are then combined to obtain the net contribution from various multiplets in the context of a particular supersymmetric extra-dimensional model that has been shown to give a vanishing result for the 4D vacuum energy at the classical level. Surprisingly, we find that supersymmetry can be preserved dynamically at one loop in the case of identical branes, without arranging any particular relationship between the brane parameters. Perturbing away from the case of identical branes is shown to give a positive 1-loop contribution to the 4D vacuum energy whose size is set by the radius of the extra dimensions.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0595 seconds