• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Test Modeling of Dynamic Variable Systems using Feature Petri Nets

Püschel, Georg, Seidl, Christoph, Neufert, Mathias, Gorzel, André, Aßmann, Uwe 08 November 2013 (has links) (PDF)
In order to generate substantial market impact, mobile applications must be able to run on multiple platforms. Hence, software engineers face a multitude of technologies and system versions resulting in static variability. Furthermore, due to the dependence on sensors and connectivity, mobile software has to adapt its behavior accordingly at runtime resulting in dynamic variability. However, software engineers need to assure quality of a mobile application even with this large amount of variability—in our approach by the use of model-based testing (i.e., the generation of test cases from models). Recent concepts of test metamodels cannot efficiently handle dynamic variability. To overcome this problem, we propose a process for creating black-box test models based on dynamic feature Petri nets, which allow the description of configuration-dependent behavior and reconfiguration. We use feature models to define variability in the system under test. Furthermore, we illustrate our approach by introducing an example translator application.
2

Test Modeling of Dynamic Variable Systems using Feature Petri Nets

Püschel, Georg, Seidl, Christoph, Neufert, Mathias, Gorzel, André, Aßmann, Uwe 08 November 2013 (has links)
In order to generate substantial market impact, mobile applications must be able to run on multiple platforms. Hence, software engineers face a multitude of technologies and system versions resulting in static variability. Furthermore, due to the dependence on sensors and connectivity, mobile software has to adapt its behavior accordingly at runtime resulting in dynamic variability. However, software engineers need to assure quality of a mobile application even with this large amount of variability—in our approach by the use of model-based testing (i.e., the generation of test cases from models). Recent concepts of test metamodels cannot efficiently handle dynamic variability. To overcome this problem, we propose a process for creating black-box test models based on dynamic feature Petri nets, which allow the description of configuration-dependent behavior and reconfiguration. We use feature models to define variability in the system under test. Furthermore, we illustrate our approach by introducing an example translator application.

Page generated in 0.0709 seconds