• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Live Acquisition of Volatile Data : Through the use of a programmable HID control chip

Berggren, Tommy, Denham-Smith, Adam January 2013 (has links)
This research lays a foundation for automated acquisition of volatile data by presenting a prototype device which carries out the deeds of a forensic investigator, essentially making it a “forensic investigator on a stick”. The Teensy 3.0 device is programmed to interact with an external USB device for storage purposes. All interaction with a live target system must be documented thoroughly according to forensic best practices. Therefore quantitative measurements of system contamination related to the device actions are presented. The device is conclusively able to perform a memory dump and provide a warning of the existence of Truecrypt encrypted containers.
2

A Control System For A 3-Axis Camera Stabilizer

Hasnain, Bakhtiyar Asef, Algoz, Ali January 2018 (has links)
The purpose of the project is to implement a control system for a 3- axis camera stabilizer. The stabilization is done by controlling three blushless DC motors driving the yaw, pitch and roll movements of the camera stabilizer's frame, respectively. The stabilizer's frame (equipped with three motors) is used in this project, and it is directly taken from a commercial product, Feiyu Tech G4S. The control system concerned in this project consists of a Teensy 3.6 microcontroller unit (MCU) implemented with three PID controllers, the motor drivers to drive the three motors, and an inertial measurement unit (IMU) of 9 degrees of freedom.The MCU is also used to process the IMU angle measurements of the camera position in 3- axis motion, in particular, it converts the IMU raw data to an angle for each of the axis, it then processes the angle data using a Kalman filter to reduce the noise. In the end of the project a prototype has been built and tested, it uses the control system to run the stabilizing process. It is shown to work quite successfully. In particular, it can run smoothly in the roll and pitch axes and compensate for unwanted movement, however the yaw axis does not function as intended due to a misplacement as well as poor calibration process of the magnetometer sensor in the IMU, which is left for future work.

Page generated in 0.0338 seconds