• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IMPLEMENTATION OF THE SHACK-HARTMANN TEST FOR ASTRONOMICAL TELESCOPE TESTING.

Richardson, Michael Francis. January 1983 (has links)
No description available.
2

OPTICAL TESTING OF LARGE TELESCOPES USING MULTIPLE SUBAPERTURES (HETERODYNE INTERFEROMETRY, ZERNIKE POLYNOMIALS).

STUHLINGER, TILMAN WERNER., STUHLINGER, TILMAN WERNER. January 1984 (has links)
The construction of telescope systems with large apertures (≃10 meters) is currently being planned. These entire telescope systems should be optically tested in a double-pass configuration. The high cost of manufacturing optical flats large enough to test a large telescope has stimulated research on a new type of testing in which several smaller flats, or subapertures, are distributed over the telescope aperture. The problem is to combine the partial data obtained only over the subapertures in order to obtain the wavefront over the entire aperture. It was the purpose of this dissertation to prove experimentally that subaperture testing is feasible. The question of the necessity of phasing the subapertures relative to each other was specifically addressed in the experiment. A brief review is given of two algorithms utilizing Zernike polynomials. A third subaperture testing analysis algorithm, the Stuhlinger method, is developed in this work; this provides raw phase data over the entire aperture of the system under test. A statistical analysis of this algorithm is given. A 6 in. diameter array of seven subapertures was used in this small-scale test. Data were obtained with the array, a monolithic flat, and a mask simulating the array placed over the monolithic flat. The results of the experiment are in good agreement with control data measured with a Zygo interferometer. Data and analysis for the Stuhlinger method are also presented. Error analysis shows that Zernike coefficients derived using subaperture testing are 5 times less accurate than those derived using monolithic testing for the subaperture configuration used here. It is shown that knowledge of the subaperture tilts can produce accurate wavefront information with as few as 30 data points per subaperture, as compared with 750 data points per subaperture if tilts are unknown. In conclusion, subaperture testing indeed functions in the absence of subaperture phasing. Tilt information influences mostly the lower order Zernike coefficients; lack of such information may be compensated by the use of more data points. Algorithms yielding either Zernike coefficients or raw phase data were shown to function. (Abstract shortened with permission of author.)
3

Use of annular subapertures with focus control for testing rotationally symmetric optical systems.

Liu, Ying-Moh Edward. January 1987 (has links)
A subaperture configuration to test aspheric optical components or systems is developed. The method developed has potential for testing rotationally symmetric aspheres without the use of null lenses. The aperture is divided into annular subaperture regions and an interferometer is refocused for each region to reduce the fringe density. Essential mathematical treatments involving annular subapertures, such as annular Zernike polynomials, are provided in detail. Numerical and experimental validations of the algorithm are described. Tolerance analyses on subaperture measurements are given. Computer programs were written to link the subaperture Zernike coefficients and to determine the full-aperture Zernike coefficients.

Page generated in 0.0713 seconds