• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamics of selenium and tellurium in molten metallurgical slags and alloys

Johnston, Murray January 2007 (has links)
There are a number of impurity elements present in sulphide ores that can have a deleterious effect on the properties of the final copper metal product. In this thesis, an equilibrium distribution technique was used to determine the thermodynamic behaviour of selenium and tellurium in molten slags used in copper production. Calcium ferrite based slags and copper or silver alloy were equilibrated in magnesia crucibles at temperatures of 1200 to 1400 °C and oxygen partial pressures of 10-11 to 10-0.68 atm. Under conditions typical of those employed during copper converting, the minor elements were found to enter the slag as negatively charged species. The partitioning of selenium and tellurium to the slag was greatest at high temperature, low oxygen partial pressure and at highest concentration of basic oxide (CaO or BaO). The experimentally derived data were combined with published information to calculate the selenide and telluride capacities of the slag, and also to generate fundamental thermodynamic activity data for selenium and tellurium in the slag phase. It was found that the activity coefficients of selenium and tellurium were independent of their concentration in the slag over the range studied, but were strongly dependent on the temperature, slag chemistry and oxidation state of the slag. Experiments were also designed and carried out to determine what effect the presence of iron oxide and its oxidation state has on the behaviour of selenium in the slag. A series of experiments involving iron oxide additions to a calcium aluminate slag was conducted under increasingly oxidising conditions to assess the effect of total iron on the selenide capacity as the dominant oxidation state of iron in the slag changed. It was shown that at a constant ratio of CaO:Al2O3, the selenide capacity increased with total iron in the slag. However, the effect on the selenide capacity did not appear any more significant as the Fe3+:Fe2+ ratio changed in a particular direction. 4 Another series of experiments was carried out with iron calcium silicate slags to determine the stability of phases within the slag, and how this affected the equilibrium distribution and activity coefficient of selenium in the slag. A number of solid phases were identified and their composition determined by scanning electron microscopy, energy dispersive spectroscopy and electron microprobe analysis. The composition and minor element content of the remaining liquid was calculated using a thermodynamic model. From this it was found that the capacity of the liquid slag has a region of independence against slag chemistry, before increasing strongly with increasing lime content to the calcium ferrite composition. Some of the implications of this work are discussed with reference to the practicality of adjusting the process variables in a large-scale industrial process for the purpose of managing minor element content of the molten phases. Considerations include the effect on copper recovery and rate of wear of furnace refractory materials.
2

Tellurium and selenium precipitation from copper sulphate solutions

Bello, Yusuf O. 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: The copper sulphate leach solutions produced during the final pressure leach stages in base metal refinery processes contain low concentrations of other precious metals (OPMs, namely Rh, Ru and Ir ) and impurities in addition to the base metals (BMs) of interest. Se and Te impurities, in particular, must be removed from the leach solution before it is fed to copper electrowinning because these species have adverse effects on electrowinning efficiency. Currently, these elements are being precipitated from the leach solution with sulphurous acid. Se precipitation is satisfactory but Te removal still proves challenging. Previous studies have shown that tellurium can either be precipitated as cuprous telluride from copper sulphate solutions by reduction with sulphurous acid alone, or by the addition of SO2 as a precipitating agent and metallic copper as an additional precipitating agent. The objective of this study was to evaluate the effects of different process variables on Te and Se recovery in order to propose operating conditions at which increased tellurium precipitation can be achieved with minimal co-precipitation of base metals of interest (notably Cu and Ni). This would also aid in the development of a better understanding of tellurium and selenium precipitation mechanisms in CuSO4-H2SO4 medium. / AFRIKKANSE OPSOMMING: Die kopersulfaat logingsoplossing wat gedurende die finale druklogingstadia in basis metaal raffinaderye produseer word bevat, behalwe vir die basis metale van belang, ook lae konsentrasies ander edelmetale (AEM, naamlik Rh, Ru, en Ir) sowel as onsuiwerhede. Se en Te onsuiwerhede, in die besonder, moet vanuit die logingsoplossing verwyder word voordat die oplossing na die koper elektrowinning gevoer word omdat hierdie spesies negatiewe effekte op die elektrowinning effektiwiteit het. Hierdie elemente word tans met swaweligsuur vanuit die logingsoplossing gepresipiteer. Se presipitasie is voldoende, maar die Te verwydering bly steeds problematies. Vorige studies het getoon dat tellurium as kuprotelluried vanuit kopersulfaat oplossings presipiteer kan word deur middel van reduksie met swaweligsuur alleen, of met die byvoeging van SO2 as presipiteermiddel en metallieke koper as addisionele presipiteermiddel. Die doelwit van hierdie studie was om die effekte van verskillende prosesveranderlikes op Te en Se presipitasie te ondersoek ten einde bedryfstoestande voor te stel wat verbeterde tellurium presipitasie toelaat met minimale kopresipitasie van basis metale van belang (hoofsaaklik Cu en Ni). Dit sal ook bydra tot die ontwikkeling van ʼn beter begrip van die tellurium en selenium presipitasie meganisme in ʼn CuSO4-H2SO4 medium.

Page generated in 0.0456 seconds