• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurements and modeling of transpiration cooling

Natsui, Greg A. 01 January 2010 (has links)
A segment of transpiring wall is installed near a row of unshaped film holes. The effects on the aerodynamic performance and cooling downstream of the row of cylindrical holes in the presence of transpiration is studied numerically. The changes in behavior of the film due to relative positioning of the injection sources and blowing ratios are predicted to understand the sensitivity of cooling and aerodynamic losses on the relative positioning of the two sources and each blowing ratio. The results indicate that a coupling of the two sources allows a more efficient use of coolant by generating a more uniform initial film resulting in improved component durability through reduction of hot- streaks. With careful optimization the discrete holes can be placed farther apart laterally operating at a lower blowing ratio with a transpiration segment making the large deficits in cooling effectiveness mid-pitch less severe, overall minimizing coolant usage. Addition of transpiration increases the aerodynamic losses associated with injection. This effect can be arguably small compared to corresponding thermal benefits seen by coupling the two. Comparisons of linear superposition predictions of the two independent sources with the corresponding coupled scenario indicate the two films positively influence one another and outperform predictions. The interaction between the two films is dependent upon the relative placement of the transpiration; all relative placements have an overall beneficial effect on the cooling seen by the protected wall. An increase in area-averaged film cooling effectiveness of 300% is seen along with only a 50% increase in loss coefficient by injecting an additional 10% coolant. In this study the downstream placement of transpiration is found to perform best of the three geometries tested while considering cooling, aerodynamic losses, local uniformity and manufacturing feasibility. With further study and optimization this technique can potentially provide more effective thermal protection at a lower cost of aerodynamic losses and spent coolant. A method of measuring the local temperature of a porous wall is also discussed. Measurements are taken with temperature sensitive paint applied in thin coats to the wall. This technique was validated on a 40PPI, 7% relative density aluminum porous coupon. Measurements of discharge coefficients as well as downstream effectiveness data are included to verify the flow through the porous wall was unaltered by applying the paint. A maximum deviation in film-cooling effectiveness of 9% between the two cases with the majority of data falling within 4% was found, very similar to the experimental uncertainty of the rig. This excellent agreement between the repeated tests showed that by applying thermal paint to a wall of such porosity does not significantly affect the flow exiting the wall and hence the measurement technique can readily be applied to transpiration cooling studies at this scale. Methods of filtering the temperature sensitive paint on the porous wall are presented.
2

傾斜前面円柱先頭形状によるTSTO極超音速空力干渉の低減

小澤, 啓伺, OZAWA, Hiroshi, 花井, 勝祥, HANAI, Katsuhisa, 中村, 佳朗, NAKAMURA, Yoshiaki 05 January 2008 (has links)
No description available.
3

極超音速TSTO空力干渉流れ場における2物体間隔の空力加熱率への影響

西野, 敦洋, NISHINO, Atsuhiro, 石川, 尊史, ISHIKAWA, Takahumi, 北村, 圭一, KITAMURA, Keiichi, 中村, 佳朗, NAKAMURA, Yoshiaki 05 November 2005 (has links)
No description available.
4

Development of a time-resolved quantitative surface-temperature measurement technique and its application in short-duration wind tunnel testing

Risius, Steffen 04 July 2018 (has links)
No description available.

Page generated in 0.099 seconds