• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Template-Assisted Synthesis & Characterization of Active Materials for Li-ion Batteries

Yim, Chae-Ho 10 February 2011 (has links)
The Lithium-ion (Li-ion) battery is one of the major topics currently studied as a potential way to help in reducing greenhouse gas emissions. Major car manufacturers are interested in adapting the Li-ion battery in the power trains of Plug-in Hybrid Electric Vehicles (PHEV) to improve fuel efficiency. Materials currently used for Li-ion batteries are LiCoO2 (LCO) and graphite—the first materials successfully integrated by Sony into Li-ion batteries. However, due to the high cost and polluting effect of cobalt (Co), and the low volumetric capacity of graphite, new materials are being sought out. LiFePO4 (LFP) and SnO2 are both good alternatives for the cathode and anode materials in Li-ion batteries. But, to create high-performance batteries, nano-sized carbon-coated particles of LFP and SnO2 are required. The present work attempts to develop a new synthesis method for these materials: organic template-assisted synthesis for three-dimensionally ordered macroporous (3DOM) LFP and porous SnO2. With the newly developed synthesis, highly pure materials were successfully synthesized and tested in Li-ion batteries. The obtained capacity for LFP was 158m Ah/g, which is equivalent to 93% of the theoretical capacity. The obtained capacity for SnO2 was 700 mAh/g, which is equivalent to 90% of the theoretical capacity. Moreover, Hybrid Pulse Power Characterization (HPPC) was used to test LFP and LCO for comparison and feasibility in PHEVs. HPPC is generally used to test the feasibility and capacity fade for PHEVs. It simulates battery use in various driving conditions of PHEVs to study pulse energy consumption and regeneration. In this case, HPPC was conducted on a half-cell battery for the first time to study the phenomena on a single active material, LFP or LCO. Based on the HPPC results, LFP proved to be more practical for use in PHEVs.
2

Organic Template-Assisted Synthesis & Characterization of Active Materials for Li-ion Batteries

Yim, Chae-Ho 10 February 2011 (has links)
The Lithium-ion (Li-ion) battery is one of the major topics currently studied as a potential way to help in reducing greenhouse gas emissions. Major car manufacturers are interested in adapting the Li-ion battery in the power trains of Plug-in Hybrid Electric Vehicles (PHEV) to improve fuel efficiency. Materials currently used for Li-ion batteries are LiCoO2 (LCO) and graphite—the first materials successfully integrated by Sony into Li-ion batteries. However, due to the high cost and polluting effect of cobalt (Co), and the low volumetric capacity of graphite, new materials are being sought out. LiFePO4 (LFP) and SnO2 are both good alternatives for the cathode and anode materials in Li-ion batteries. But, to create high-performance batteries, nano-sized carbon-coated particles of LFP and SnO2 are required. The present work attempts to develop a new synthesis method for these materials: organic template-assisted synthesis for three-dimensionally ordered macroporous (3DOM) LFP and porous SnO2. With the newly developed synthesis, highly pure materials were successfully synthesized and tested in Li-ion batteries. The obtained capacity for LFP was 158m Ah/g, which is equivalent to 93% of the theoretical capacity. The obtained capacity for SnO2 was 700 mAh/g, which is equivalent to 90% of the theoretical capacity. Moreover, Hybrid Pulse Power Characterization (HPPC) was used to test LFP and LCO for comparison and feasibility in PHEVs. HPPC is generally used to test the feasibility and capacity fade for PHEVs. It simulates battery use in various driving conditions of PHEVs to study pulse energy consumption and regeneration. In this case, HPPC was conducted on a half-cell battery for the first time to study the phenomena on a single active material, LFP or LCO. Based on the HPPC results, LFP proved to be more practical for use in PHEVs.
3

Organic Template-Assisted Synthesis & Characterization of Active Materials for Li-ion Batteries

Yim, Chae-Ho 10 February 2011 (has links)
The Lithium-ion (Li-ion) battery is one of the major topics currently studied as a potential way to help in reducing greenhouse gas emissions. Major car manufacturers are interested in adapting the Li-ion battery in the power trains of Plug-in Hybrid Electric Vehicles (PHEV) to improve fuel efficiency. Materials currently used for Li-ion batteries are LiCoO2 (LCO) and graphite—the first materials successfully integrated by Sony into Li-ion batteries. However, due to the high cost and polluting effect of cobalt (Co), and the low volumetric capacity of graphite, new materials are being sought out. LiFePO4 (LFP) and SnO2 are both good alternatives for the cathode and anode materials in Li-ion batteries. But, to create high-performance batteries, nano-sized carbon-coated particles of LFP and SnO2 are required. The present work attempts to develop a new synthesis method for these materials: organic template-assisted synthesis for three-dimensionally ordered macroporous (3DOM) LFP and porous SnO2. With the newly developed synthesis, highly pure materials were successfully synthesized and tested in Li-ion batteries. The obtained capacity for LFP was 158m Ah/g, which is equivalent to 93% of the theoretical capacity. The obtained capacity for SnO2 was 700 mAh/g, which is equivalent to 90% of the theoretical capacity. Moreover, Hybrid Pulse Power Characterization (HPPC) was used to test LFP and LCO for comparison and feasibility in PHEVs. HPPC is generally used to test the feasibility and capacity fade for PHEVs. It simulates battery use in various driving conditions of PHEVs to study pulse energy consumption and regeneration. In this case, HPPC was conducted on a half-cell battery for the first time to study the phenomena on a single active material, LFP or LCO. Based on the HPPC results, LFP proved to be more practical for use in PHEVs.
4

Organic Template-Assisted Synthesis & Characterization of Active Materials for Li-ion Batteries

Yim, Chae-Ho January 2011 (has links)
The Lithium-ion (Li-ion) battery is one of the major topics currently studied as a potential way to help in reducing greenhouse gas emissions. Major car manufacturers are interested in adapting the Li-ion battery in the power trains of Plug-in Hybrid Electric Vehicles (PHEV) to improve fuel efficiency. Materials currently used for Li-ion batteries are LiCoO2 (LCO) and graphite—the first materials successfully integrated by Sony into Li-ion batteries. However, due to the high cost and polluting effect of cobalt (Co), and the low volumetric capacity of graphite, new materials are being sought out. LiFePO4 (LFP) and SnO2 are both good alternatives for the cathode and anode materials in Li-ion batteries. But, to create high-performance batteries, nano-sized carbon-coated particles of LFP and SnO2 are required. The present work attempts to develop a new synthesis method for these materials: organic template-assisted synthesis for three-dimensionally ordered macroporous (3DOM) LFP and porous SnO2. With the newly developed synthesis, highly pure materials were successfully synthesized and tested in Li-ion batteries. The obtained capacity for LFP was 158m Ah/g, which is equivalent to 93% of the theoretical capacity. The obtained capacity for SnO2 was 700 mAh/g, which is equivalent to 90% of the theoretical capacity. Moreover, Hybrid Pulse Power Characterization (HPPC) was used to test LFP and LCO for comparison and feasibility in PHEVs. HPPC is generally used to test the feasibility and capacity fade for PHEVs. It simulates battery use in various driving conditions of PHEVs to study pulse energy consumption and regeneration. In this case, HPPC was conducted on a half-cell battery for the first time to study the phenomena on a single active material, LFP or LCO. Based on the HPPC results, LFP proved to be more practical for use in PHEVs.
5

Nanoestruturação de filmes finos para utilização em eletrodos enzimáticos / Nanostructuration of thin films for applying in enzyme based biosensors

Gonçales, Vinícius Romero 12 December 2011 (has links)
Os desafios atuais no desenvolvimento de biossensores abrangem diversos aspectos, tais como a necessidade de se aperfeiçoar a interface de contato entre o substrato e o material biológico, a eficiência de transdução do sinal químico em um sinal mensurável, o tempo de resposta, a compatibilidade dos biossensores com matrizes biológicas e a integração de diferentes elementos de reconhecimento biológico em um único dispositivo, visando a detecção de distintos analitos. Nesse contexto, o desenvolvimento da nanociência tem criado recursos bastante atraentes para otimizar os aspectos descritos acima. O presente trabalho apresenta, portanto, estudos realizados para a construção de mediadores nanoestruturados que possam operar de maneira mais eficiente que os correspondentes materiais maciços (sistemas não-nanoestruturados). Em uma das abordagens utilizadas, um mediador híbrido de hexacianoferrato de cobre/polipirrol (CuHCNFe/Ppy) teve suas propriedades eletroquímicas aliadas às propriedades morfológicas e eletrônicas de um feltro revestido com nanotubos de carbono do tipo \"cup-stacked\" (feltro/NTCCS) para o desenvolvimento de um sensor de H2O2. O feltro/NTCCS é uma malha hidrofílica condutora que permite uma dispersão bastante uniforme do mediador híbrido. Essa característica, aliada ao aumento da área eletroativa e à interação eletrônica existente entre o CuHCNFe/PPy e os nanotubos de carbono criaram uma plataforma favorável para a construção de um biossensor de glicose. Em uma segunda estratégia, esferas de poliestireno com diâmetros de 300, 460, 600 e 800 nm foram utilizadas como molde para a formação de filmes de CuHCNFe/PPy macroporosos. Os distintos mediadores foram aplicados na detecção de H2O2 com o intuito de se correlacionar a importância do tamanho do poro com o desempenho analítico obtido. Diferentemente do esperado, os mediadores maciços e porosos apresentaram desempenhos analíticos bastante similares, o que levou a uma consideração das propriedades termodinâmicas de superfícies curvas, da molhabilidade de materiais porosos e da influência da cinética eletroquímica na utilização de sistemas porosos. Tais plataformas também foram aplicadas com sucesso na construção de biossensores de glicose e de colina. Por fim, foi possível sintetizar mediadores nanoestruturados através da imobilização de camadas de azul da Prússia e de CuHCNFe dentro das cavidades de filmes de TiO2 mesoporosos (13, 20 e 40 nm de diâmetro). Os resultados obtidos demonstraram a possibilidade de se modular o desempenho dos sensores de H2O2 em função do diâmetro dos poros e da quantidade de mediador imobilizado. A união dos resultados analíticos obtidos com os dados de microscopia eletrônica de varredura possibilitou observar a importância do efeito de confinamento no desempenho dos mediadores. Além disso, dados espectroscópicos na região do visível foram fundamentais para relacionar a presença de defeitos estruturais com a reatividade do material. No fim, tais plataformas foram utilizadas para a formulação de biossensores de colina. / Nowadays, the challenges in the development of biosensors cover various aspects such as the need to improve the interface between the substrate and the biological material, the efficiency of the chemical signal transduction in a measurable one, the response time, the compatibility with biological matrices and the integration of different biological recognition elements in a single device, in order to perform detections of different analytes. In this context, the development of nanoscience has created very attractive features to optimize the aspects described above. Consequently, the present work studies the build up of nanostructured transducers that can operate more efficiently than the corresponding bulk materials (systems non-nanostructured). In one of the approaches used, a hybrid transducer consisting of copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) had its electrochemical properties combined with the morphological and electronic properties of a felt decorated with cup-stacked type carbon nanotubes (felt/CSCNT) for development of a H2O2 sensor. Felt/CSCNT is a hydrophilic conductive mesh that allows a uniform dispersion of the hybrid transducer. This feature, coupled with the improvement of electroactive surface and with the electronic interaction among the CuHCNFe/Ppy and carbon nanotubes have created a favorable platform for the construction of a glucose biosensor. In a second strategy, polystyrene spheres with diameters of 300, 460, 600 and 800 nm were used as templates for the formation of macroporous CuHCNFe/Ppy films. The transducers were used to detect H2O2 in order to correlate the importance of pore size with the obtained analytical performance. Unlike expected, porous and bulk transducers presented very similar analytical performances, which led to a consideration of the thermodynamic properties of curved surfaces, the wettability of porous materials and the influence of electrochemical kinetics during the use of porous systems. Such platforms have also been successfully applied in the preparation of glucose and choline biosensors. Finally, it was possible to synthesize nanostructured transducers through the immobilization of Prussian blue layers and CuHCNFe inside the cavities of mesoporous TiO2 films (pore diameters of 13, 20 and 40 nm). The obtained results demonstrated the possibility of modulating the performance of H2O2 sensors according to the pore diameter and the amount of immobilized transducer. The union of the obtained analytical results with scanning electron microscopy data showed the importance of confinement effect on the transducers performances. In addition, spectroscopic data in the visible region were essential to correlate the presence of structural defects with the material reactivity. In the end, these platforms were used for the formulation of choline biosensors.
6

Nanoestruturação de filmes finos para utilização em eletrodos enzimáticos / Nanostructuration of thin films for applying in enzyme based biosensors

Vinícius Romero Gonçales 12 December 2011 (has links)
Os desafios atuais no desenvolvimento de biossensores abrangem diversos aspectos, tais como a necessidade de se aperfeiçoar a interface de contato entre o substrato e o material biológico, a eficiência de transdução do sinal químico em um sinal mensurável, o tempo de resposta, a compatibilidade dos biossensores com matrizes biológicas e a integração de diferentes elementos de reconhecimento biológico em um único dispositivo, visando a detecção de distintos analitos. Nesse contexto, o desenvolvimento da nanociência tem criado recursos bastante atraentes para otimizar os aspectos descritos acima. O presente trabalho apresenta, portanto, estudos realizados para a construção de mediadores nanoestruturados que possam operar de maneira mais eficiente que os correspondentes materiais maciços (sistemas não-nanoestruturados). Em uma das abordagens utilizadas, um mediador híbrido de hexacianoferrato de cobre/polipirrol (CuHCNFe/Ppy) teve suas propriedades eletroquímicas aliadas às propriedades morfológicas e eletrônicas de um feltro revestido com nanotubos de carbono do tipo \"cup-stacked\" (feltro/NTCCS) para o desenvolvimento de um sensor de H2O2. O feltro/NTCCS é uma malha hidrofílica condutora que permite uma dispersão bastante uniforme do mediador híbrido. Essa característica, aliada ao aumento da área eletroativa e à interação eletrônica existente entre o CuHCNFe/PPy e os nanotubos de carbono criaram uma plataforma favorável para a construção de um biossensor de glicose. Em uma segunda estratégia, esferas de poliestireno com diâmetros de 300, 460, 600 e 800 nm foram utilizadas como molde para a formação de filmes de CuHCNFe/PPy macroporosos. Os distintos mediadores foram aplicados na detecção de H2O2 com o intuito de se correlacionar a importância do tamanho do poro com o desempenho analítico obtido. Diferentemente do esperado, os mediadores maciços e porosos apresentaram desempenhos analíticos bastante similares, o que levou a uma consideração das propriedades termodinâmicas de superfícies curvas, da molhabilidade de materiais porosos e da influência da cinética eletroquímica na utilização de sistemas porosos. Tais plataformas também foram aplicadas com sucesso na construção de biossensores de glicose e de colina. Por fim, foi possível sintetizar mediadores nanoestruturados através da imobilização de camadas de azul da Prússia e de CuHCNFe dentro das cavidades de filmes de TiO2 mesoporosos (13, 20 e 40 nm de diâmetro). Os resultados obtidos demonstraram a possibilidade de se modular o desempenho dos sensores de H2O2 em função do diâmetro dos poros e da quantidade de mediador imobilizado. A união dos resultados analíticos obtidos com os dados de microscopia eletrônica de varredura possibilitou observar a importância do efeito de confinamento no desempenho dos mediadores. Além disso, dados espectroscópicos na região do visível foram fundamentais para relacionar a presença de defeitos estruturais com a reatividade do material. No fim, tais plataformas foram utilizadas para a formulação de biossensores de colina. / Nowadays, the challenges in the development of biosensors cover various aspects such as the need to improve the interface between the substrate and the biological material, the efficiency of the chemical signal transduction in a measurable one, the response time, the compatibility with biological matrices and the integration of different biological recognition elements in a single device, in order to perform detections of different analytes. In this context, the development of nanoscience has created very attractive features to optimize the aspects described above. Consequently, the present work studies the build up of nanostructured transducers that can operate more efficiently than the corresponding bulk materials (systems non-nanostructured). In one of the approaches used, a hybrid transducer consisting of copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) had its electrochemical properties combined with the morphological and electronic properties of a felt decorated with cup-stacked type carbon nanotubes (felt/CSCNT) for development of a H2O2 sensor. Felt/CSCNT is a hydrophilic conductive mesh that allows a uniform dispersion of the hybrid transducer. This feature, coupled with the improvement of electroactive surface and with the electronic interaction among the CuHCNFe/Ppy and carbon nanotubes have created a favorable platform for the construction of a glucose biosensor. In a second strategy, polystyrene spheres with diameters of 300, 460, 600 and 800 nm were used as templates for the formation of macroporous CuHCNFe/Ppy films. The transducers were used to detect H2O2 in order to correlate the importance of pore size with the obtained analytical performance. Unlike expected, porous and bulk transducers presented very similar analytical performances, which led to a consideration of the thermodynamic properties of curved surfaces, the wettability of porous materials and the influence of electrochemical kinetics during the use of porous systems. Such platforms have also been successfully applied in the preparation of glucose and choline biosensors. Finally, it was possible to synthesize nanostructured transducers through the immobilization of Prussian blue layers and CuHCNFe inside the cavities of mesoporous TiO2 films (pore diameters of 13, 20 and 40 nm). The obtained results demonstrated the possibility of modulating the performance of H2O2 sensors according to the pore diameter and the amount of immobilized transducer. The union of the obtained analytical results with scanning electron microscopy data showed the importance of confinement effect on the transducers performances. In addition, spectroscopic data in the visible region were essential to correlate the presence of structural defects with the material reactivity. In the end, these platforms were used for the formulation of choline biosensors.

Page generated in 0.1069 seconds