• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spawning habitat and reproductive strategies of lake trout (Salvelinus namaycush) in a northern boreal lake

Callaghan, David 29 July 2015 (has links)
Lake trout (Salvelinus namaycush) have a broad distribution across Canada’s north, yet most studies that describe reproductive habitat and behaviour have been conducted in the southern extent of their range. Northern regions are experiencing unprecedented changes from climate and industrial development, and thus there is a pressing need to understand the reproductive habitat and behaviour of this species. I examined a dozen sites around Alexie Lake, Northwest Territories, to test if physical habitat and wind exposure were important determinants of spawning site use and embryonic survival. Spawning was found to occur in ~2 m water depth, on 3–15 cm diameter clean substrate on the leading edge of shoals that ended in a rock crib rising abruptly in nearshore regions around the lake. Wind direction was predominantly from the west, although it was highly variable within and among spawning seasons. I found evidence of lake trout spawning at each site examined, which was not limited to shoals facing a predominant wind direction. High variation in embryonic survival (2–83%) from incubation trays was observed among spawning sites, demonstrating a large gradient in habitat quality exists within a given lake. However, modelled wind exposure did not predict embryonic survival, nor did physical characteristics - including shoal depth and slope, as well as cobble size and shape - that may influence interstitial water flow on spawning shoals. Using an acoustic telemetry monitoring system and novel spatial temporal clustering analysis, I was able to quantify lake trout spawning movements and behaviours over the course of an entire spawning season. Lake trout formed clusters on spawning shoals around the entire nearshore region, as well as around several islands, confirming that suitable spawning habitat is abundant in Alexie Lake. Males arrived on spawning shoals earlier than females and remained longer for a maximum of 25 consecutive days; females occupied spawning shoals for a maximum of 8 consecutive days over the course of the spawning season. Males formed over four times as many spawning clusters and visited twice as many sites than females. Spawning clusters were predominantly formed at night but were also observed during daylight hours, especially during the peak spawning season (September 9–19). I found males had higher activity rates, and spent longer periods on spawning shoals, than females, in spite of similar daily travel distances between sexes. Overall, my findings challenge the conventional role of wind as a predominant predictor of lake trout spawning site quality. I propose that the unpredictable nature of wind and abundance of suitable habitat may favour lake-wide spawning by lake trout as a bet-hedging strategy in northern lakes with limited fetch. / May 2016
2

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
3

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
4

Deep Temporal Clustering: Fully Unsupervised Learning of Time-Domain Features

January 2018 (has links)
abstract: Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. This thesis presents a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for temporal dimensionality reduction and a novel temporal clustering layer for cluster assignment. Then it jointly optimizes the clustering objective and the dimensionality reduction objective. Based on requirement and application, the temporal clustering layer can be customized with any temporal similarity metric. Several similarity metrics and state-of-the-art algorithms are considered and compared. To gain insight into temporal features that the network has learned for its clustering, a visualization method is applied that generates a region of interest heatmap for the time series. The viability of the algorithm is demonstrated using time series data from diverse domains, ranging from earthquakes to spacecraft sensor data. In each case, the proposed algorithm outperforms traditional methods. The superior performance is attributed to the fully integrated temporal dimensionality reduction and clustering criterion. / Dissertation/Thesis / Masters Thesis Computer Engineering 2018
5

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
6

Neighbour discovery and distributed spatio-temporal cluster detection in pocket switched networks

Orlinski, Matthew January 2013 (has links)
Pocket Switched Networks (PSNs) offer a means of infrastructureless inter-human communication by utilising Delay and Disruption Tolerant Networking (DTN) technology. However, creating PSNs involves solving challenges which were not encountered in the Deep Space Internet for which DTN technology was originally intended.End-to-end communication over multiple hops in PSNs is a product of short range opportunistic wireless communication between personal mobile wireless devices carried by humans. Opportunistic data delivery in PSNs is far less predictable than in the Deep Space Internet because human movement patterns are harder to predict than the orbital motion of satellites. Furthermore, PSNs require some scheme for efficient neighbour discovery in order to save energy and because mobile devices in PSNs may be unaware of when their next encounter will take place.This thesis offers novel solutions for neighbour discovery and opportunistic data delivery in PSNs that make practical use of dynamic inter-human encounter patterns.The first contribution is a novel neighbour discovery algorithm for PSNs called PISTONS which relies on a new inter-probe time calculation (IPC) and the bursty encounter patterns of humans to set the time between neighbour discovery scans. The IPC equations and PISTONS also give participants the ability to easily specify their required level of connectivity and energy saving with a single variable.This thesis also contains novel distributed spatio-temporal clustering and opportunistic data delivery algorithms for PSNs which can be used to deliver data over multiple hops. The spatio-temporal clustering algorimths are also used to analyse the social networks and transient groups which are formed when humans interact.
7

Study of Some Biologically Relevant Dynamical System Models: (In)stability Regions of Cyclic Solutions in Cell Cycle Population Structure Model Under Negative Feedback and Random Connectivities in Multitype Neuronal Network Models

KC, Rabi January 2020 (has links)
No description available.
8

Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction

Oesterling, Patrick 17 May 2016 (has links) (PDF)
This thesis is about visualizing a kind of data that is trivial to process by computers but difficult to imagine by humans because nature does not allow for intuition with this type of information: high-dimensional data. Such data often result from representing observations of objects under various aspects or with different properties. In many applications, a typical, laborious task is to find related objects or to group those that are similar to each other. One classic solution for this task is to imagine the data as vectors in a Euclidean space with object variables as dimensions. Utilizing Euclidean distance as a measure of similarity, objects with similar properties and values accumulate to groups, so-called clusters, that are exposed by cluster analysis on the high-dimensional point cloud. Because similar vectors can be thought of as objects that are alike in terms of their attributes, the point cloud\'s structure and individual cluster properties, like their size or compactness, summarize data categories and their relative importance. The contribution of this thesis is a novel analysis approach for visual exploration of high-dimensional point clouds without suffering from structural occlusion. The work is based on implementing two key concepts: The first idea is to discard those geometric properties that cannot be preserved and, thus, lead to the typical artifacts. Topological concepts are used instead to shift away the focus from a point-centered view on the data to a more structure-centered perspective. The advantage is that topology-driven clustering information can be extracted in the data\'s original domain and be preserved without loss in low dimensions. The second idea is to split the analysis into a topology-based global overview and a subsequent geometric local refinement. The occlusion-free overview enables the analyst to identify features and to link them to other visualizations that permit analysis of those properties not captured by the topological abstraction, e.g. cluster shape or value distributions in particular dimensions or subspaces. The advantage of separating structure from data point analysis is that restricting local analysis only to data subsets significantly reduces artifacts and the visual complexity of standard techniques. That is, the additional topological layer enables the analyst to identify structure that was hidden before and to focus on particular features by suppressing irrelevant points during local feature analysis. This thesis addresses the topology-based visual analysis of high-dimensional point clouds for both the time-invariant and the time-varying case. Time-invariant means that the points do not change in their number or positions. That is, the analyst explores the clustering of a fixed and constant set of points. The extension to the time-varying case implies the analysis of a varying clustering, where clusters appear as new, merge or split, or vanish. Especially for high-dimensional data, both tracking---which means to relate features over time---but also visualizing changing structure are difficult problems to solve.
9

Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction

Oesterling, Patrick 14 April 2016 (has links)
This thesis is about visualizing a kind of data that is trivial to process by computers but difficult to imagine by humans because nature does not allow for intuition with this type of information: high-dimensional data. Such data often result from representing observations of objects under various aspects or with different properties. In many applications, a typical, laborious task is to find related objects or to group those that are similar to each other. One classic solution for this task is to imagine the data as vectors in a Euclidean space with object variables as dimensions. Utilizing Euclidean distance as a measure of similarity, objects with similar properties and values accumulate to groups, so-called clusters, that are exposed by cluster analysis on the high-dimensional point cloud. Because similar vectors can be thought of as objects that are alike in terms of their attributes, the point cloud\''s structure and individual cluster properties, like their size or compactness, summarize data categories and their relative importance. The contribution of this thesis is a novel analysis approach for visual exploration of high-dimensional point clouds without suffering from structural occlusion. The work is based on implementing two key concepts: The first idea is to discard those geometric properties that cannot be preserved and, thus, lead to the typical artifacts. Topological concepts are used instead to shift away the focus from a point-centered view on the data to a more structure-centered perspective. The advantage is that topology-driven clustering information can be extracted in the data\''s original domain and be preserved without loss in low dimensions. The second idea is to split the analysis into a topology-based global overview and a subsequent geometric local refinement. The occlusion-free overview enables the analyst to identify features and to link them to other visualizations that permit analysis of those properties not captured by the topological abstraction, e.g. cluster shape or value distributions in particular dimensions or subspaces. The advantage of separating structure from data point analysis is that restricting local analysis only to data subsets significantly reduces artifacts and the visual complexity of standard techniques. That is, the additional topological layer enables the analyst to identify structure that was hidden before and to focus on particular features by suppressing irrelevant points during local feature analysis. This thesis addresses the topology-based visual analysis of high-dimensional point clouds for both the time-invariant and the time-varying case. Time-invariant means that the points do not change in their number or positions. That is, the analyst explores the clustering of a fixed and constant set of points. The extension to the time-varying case implies the analysis of a varying clustering, where clusters appear as new, merge or split, or vanish. Especially for high-dimensional data, both tracking---which means to relate features over time---but also visualizing changing structure are difficult problems to solve.

Page generated in 0.1293 seconds