Spelling suggestions: "subject:"emporal hebbian learning"" "subject:"emporal webbian learning""
1 |
Redes neurais não-supervisionadas para processamento de sequências temporais / Unsupervised neural networks for temporal sequence processingBarreto, Guilherme de Alencar 31 August 1998 (has links)
Em muitos domínios de aplicação, a variável tempo é uma dimensão essencial. Este é o caso da robótica, na qual trajetórias de robôs podem ser interpretadas como seqüências temporais cuja ordem de ocorrência de suas componentes precisa ser considerada. Nesta dissertação, desenvolve-se um modelo de rede neural não-supervisionada para aprendizagem e reprodução de trajetórias do Robô PUMA 560. Estas trajetórias podem ter estados em comum, o que torna o processo de reprodução susceptível a ambigüidades. O modelo proposto consiste em uma rede competitiva composta por dois conjuntos de pesos sinápticos; pesos intercamadas e pesos intracamada. Pesos intercamadas conectam as unidades na camada de entrada com os neurônios da camada de saída e codificam a informação espacial contida no estímulo de entrada atual. Os pesos intracamada conectam os neurônios da camada de saída entre si, sendo divididos em dois grupos: autoconexões e conexões laterais. A função destes é codificar a ordem temporal dos estados da trajetória, estabelecendo associações entre estados consecutivos através de uma regra hebbiana. Três mecanismos adicionais são propostos de forma a tornar a aprendizagem e reprodução das trajetórias mais confiável: unidades de contexto, exclusão de neurônios e redundância na representação dos estados. A rede funciona indicando na sua saída o estado atual e o próximo estado da trajetória. As simulações com o modelo proposto ilustram a habilidade do modelo em aprender e reproduzir múltiplas trajetórias com precisão e sem ambiguidades. A rede também é capaz de reproduzir trajetórias mesmo diante de perdas de neurônios e de generalizar diante da presença de ruído nos estímulos de entrada da rede. / In many application domains, the variable time is an essential dimension. This is the case of Robotics, where robot trajectories can be interpreted as temporal sequences in which the order of occurrence of each component needs to be considered. In this dissertation, an unsupervised neural network model is developed for learning and reproducing trajectories of a Robot PUMA 560. These trajectories can have states in common, making the process of reproduction susceptible to ambiguities. The proposed model consists of a competitive network with two groups of synaptic connections: interlayer anel intralayer ones. The interlayer weights connect units in the input layer with neurons in the output layer and they encode the spatial information contained in the current input stimulus. The intralayer weights connect the neurons of the output Iayer to each other, being divided in two groups: self-connections and lateral connections. The function of these links is to encode the temporal order of the trajectory states, establishing associations among consecutive states through a Hebbian rule. Three additional mechanisms are proposed in order to make trajectory Iearning and reproduction more reliable: context units, exclusion of neurons and redundancy in the representation of the states. The model outputs the current state and the next state of the trajectory. The simulations with the proposed model illustrate the ability of the network in learning and reproducing muItiple trajectories accurateIy and without arnbiguities. In addition, the proposed neural network model is able to reproduce trajectories even when neuron failures occur and can generalize well in the presence of noise in the input stimulus.
|
2 |
Redes neurais não-supervisionadas para processamento de sequências temporais / Unsupervised neural networks for temporal sequence processingGuilherme de Alencar Barreto 31 August 1998 (has links)
Em muitos domínios de aplicação, a variável tempo é uma dimensão essencial. Este é o caso da robótica, na qual trajetórias de robôs podem ser interpretadas como seqüências temporais cuja ordem de ocorrência de suas componentes precisa ser considerada. Nesta dissertação, desenvolve-se um modelo de rede neural não-supervisionada para aprendizagem e reprodução de trajetórias do Robô PUMA 560. Estas trajetórias podem ter estados em comum, o que torna o processo de reprodução susceptível a ambigüidades. O modelo proposto consiste em uma rede competitiva composta por dois conjuntos de pesos sinápticos; pesos intercamadas e pesos intracamada. Pesos intercamadas conectam as unidades na camada de entrada com os neurônios da camada de saída e codificam a informação espacial contida no estímulo de entrada atual. Os pesos intracamada conectam os neurônios da camada de saída entre si, sendo divididos em dois grupos: autoconexões e conexões laterais. A função destes é codificar a ordem temporal dos estados da trajetória, estabelecendo associações entre estados consecutivos através de uma regra hebbiana. Três mecanismos adicionais são propostos de forma a tornar a aprendizagem e reprodução das trajetórias mais confiável: unidades de contexto, exclusão de neurônios e redundância na representação dos estados. A rede funciona indicando na sua saída o estado atual e o próximo estado da trajetória. As simulações com o modelo proposto ilustram a habilidade do modelo em aprender e reproduzir múltiplas trajetórias com precisão e sem ambiguidades. A rede também é capaz de reproduzir trajetórias mesmo diante de perdas de neurônios e de generalizar diante da presença de ruído nos estímulos de entrada da rede. / In many application domains, the variable time is an essential dimension. This is the case of Robotics, where robot trajectories can be interpreted as temporal sequences in which the order of occurrence of each component needs to be considered. In this dissertation, an unsupervised neural network model is developed for learning and reproducing trajectories of a Robot PUMA 560. These trajectories can have states in common, making the process of reproduction susceptible to ambiguities. The proposed model consists of a competitive network with two groups of synaptic connections: interlayer anel intralayer ones. The interlayer weights connect units in the input layer with neurons in the output layer and they encode the spatial information contained in the current input stimulus. The intralayer weights connect the neurons of the output Iayer to each other, being divided in two groups: self-connections and lateral connections. The function of these links is to encode the temporal order of the trajectory states, establishing associations among consecutive states through a Hebbian rule. Three additional mechanisms are proposed in order to make trajectory Iearning and reproduction more reliable: context units, exclusion of neurons and redundancy in the representation of the states. The model outputs the current state and the next state of the trajectory. The simulations with the proposed model illustrate the ability of the network in learning and reproducing muItiple trajectories accurateIy and without arnbiguities. In addition, the proposed neural network model is able to reproduce trajectories even when neuron failures occur and can generalize well in the presence of noise in the input stimulus.
|
Page generated in 0.0654 seconds