• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 19
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 35
  • 17
  • 17
  • 14
  • 13
  • 13
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatio-temporal analysis of GRACE gravity field variations using the principal component analysis

Anjasmara, Ira Mutiara January 2008 (has links)
Gravity Recovery and Climate Experiment (GRACE) mission has amplified the knowledge of both static and time-variable part of the Earth’s gravity field. Currently, GRACE maps the Earth’s gravity field with a near-global coverage and over a five year period, which makes it possible to apply statistical analysis techniques to the data. The objective of this study is to analyse the most dominant spatial and temporal variability of the Earth’s gravity field observed by GRACE using a combination of analytical and statistical methods such as Harmonic Analysis (HA) and Principal Component Analysis (PCA). The HA is used to gain general information of the variability whereas the PCA is used to find the most dominant spatial and temporal variability components without having to introduce any presetting. The latter is an important property that allows for the detection of anomalous or a-periodic behaviour that will be useful for the study of various geophysical processes such as the effect from earthquakes. The analyses are performed for the whole globe as well as for the regional areas of: Sumatra- Andaman, Australia, Africa, Antarctica, South America, Arctic, Greenland, South Asia, North America and Central Europe. On a global scale the most dominant temporal variation is an annual signal followed by a linear trend. Similar results mostly associated to changing land hydrology and/or snow cover are obtained for most regional areas except over the Arctic and Antarctic where the secular trend is the prevailing temporal variability. / Apart from these well-known signals, this contribution also demonstrates that the PCA is able to reveal longer periodic and a-periodic signal. A prominent example for the latter is the gravity signal of the Sumatra-Andaman earthquake in late 2004. In an attempt to isolate these signals, linear trend and annual signal are removed from the original data and the PCA is once again applied to the reduced data. For a complete overview of these results the most dominant PCA modes for the global and regional gravity field solutions are presented and discussed.
2

MODELING OF SPATIAL AND TEMPORAL HETEROGENEITY OF THE HUMAN LUNG

Leary, Del 13 August 2013 (has links)
This thesis investigates variability in airway caliber and the distribution of ventilation within the human lung as thought to occur in asthma. Currently, the understanding of how an integrated network of airways can lead to temporal and spatial variation as found in the human lung is unclear. Throughout this thesis, a multibranch airway tree model was used in a forward modeling approach. In a variability study, the mean airway resistance (RL) was observed to be proportional to the standard deviation in airway resistance (SDRL) as reported in the literature under several conditions of airway diameter indicating the strong robustness of this behavior. The model predicted previously reported RL distributions and the reported proportionality of SDRL and RL, but only when we included coherency between airways. In a second study, patient specific ventilation was investigated using an image functional approach by closing specific airways (creating defects) identified by hyperpolarized 3He MRI from asthmatic subjects. Impedance predictions from the imposed heterogeneous ventilation were then calculated and correlated to 3He MRI ventilation defect percent (VDP), plethysmography, and spirometry data. These predictions suggest the forced oscillation technique (FOT) to be a superior metric toward the evaluation of the VDP. In a third study, we investigated how asymmetric branching could play a role in ventilation defect emergence and persistence. At high muscle activation levels simulating an asthmatic episode, airway trees with greater asymmetry reached steady state sooner, with defects that were more persistent in location, had lower RL values (~50%), and greater EL values (~25%) after bronchoconstriction. These results suggest the initial formation of ventilation defects was dependent on airway instability; however, the location and persistence of ventilation defects may be due to geometric airway structure. By modeling the contribution of ventilation defects to lung impedance, we were able to show that defects can play a role in governing the relationship between RL and its variation, and the effect of defects through VDP could be better assessed using FOT. Moreover, lung structure contributed to the emergence and persistence of ventilation defects, meaning that defects could be potentially ameliorated through structural intervention.
3

Transit time distributions and StorAge Selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability

Kim, Minseok, Pangle, Luke A., Cardoso, Charléne, Lora, Marco, Volkmann, Till H. M., Wang, Yadi, Harman, Ciaran J., Troch, Peter A. 09 1900 (has links)
Transit times through hydrologic systems vary in time, but the nature of that variability is not well understood. Transit times variability was investigated in a 1 m(3) sloping lysimeter, representing a simplified model of a hillslope receiving periodic rainfall events for 28 days. Tracer tests were conducted using an experimental protocol that allows time-variable transit time distributions (TTDs) to be calculated from data. Observed TTDs varied with the storage state of the system, and the history of inflows and outflows. We propose that the observed time variability of the TTDs can be decomposed into two parts: internal variability associated with changes in the arrangement of, and partitioning between, flow pathways; and external variability driven by fluctuations in the flow rate along all flow pathways. These concepts can be defined quantitatively in terms of rank StorAge Selection (rSAS) functions, which is a theory describing lumped transport dynamics. Internal variability is associated with temporal variability in the rSAS function, while external is not. The rSAS function variability was characterized by an inverse storage effect, whereby younger water is released in greater proportion under wetter conditions than drier. We hypothesize that this effect is caused by the rapid mobilization of water in the unsaturated zone by the rising water table. Common approximations used to model transport dynamics that neglect internal variability were unable to reproduce the observed breakthrough curves accurately. This suggests that internal variability can play an important role in hydrologic transport dynamics, with implications for field data interpretation and modeling.
4

Heterogeneidade espacial e variabilidade temporal de dois reservatórios com diferentes graus de trofia, no Estado de São Paulo / Spatial heterogeneity and temporal variability in two reservoirs with different trophic levels in São Paulo State

Santos, André Cordeiro Alves dos 18 December 2003 (has links)
O entendimento da comunidade fitoplanctônica em sistemas instáveis, como por exemplo reservatórios, necessita conhecimento de escalas de variabilidade. Com base nisso, um estudo sobre a heterogeneidade espacial e variabilidade temporal de dois reservatórios com diferentes graus de trofia, no Estado de São Paulo foi realizado em 20 estações no reservatório de Salto Grande e em 19 no reservatório do Lobo, em 3 dias consecutivos, em quatro períodos: outubro de 1999, janeiro, abril e junho e julho de 2000. Para tanto foram determinadas as concentrações de nutrientes totais e dissolvidos, material em suspensão, carbono inorgânico, clorofila a, biomassa, densidade, composição e produtividade primária da comunidade fitoplanctônica e os perfis de oxigênio dissolvido, temperatura, pH e condutividade. Os dois reservatórios tiveram estruturas espaciais semelhantes com a formação de três zonas distintas. A zona de rio, misturada, com menor penetração de luz e maior concentração de nutrientes, a zona de transição, e a zona lacustre, mais estratificada, com maior penetração de luz e menor concentração de nutrientes. Apesar dessa compartimentalização a heterogeneidade espacial no reservatório de Salto Grande foi maior que no reservatório do Lobo, sobretudo em função do gradiente longitudinal de nutrientes e luz. A variabilidade diária (3 dias) nos dois reservatórios não foi significativa na determinação da comunidade fitoplanctônica. A escala de variabilidade sazonal, nos dois reservatórios, foi determinada, principalmente pela variação nos padrões de estratificação e mistura sendo, assim, determinante na composição da comunidade fitoplanctônica. Essa influência foi mais evidente no reservatório do Lobo. A variação temporal e heterogeneidade espacial das mais abundantes espécies e grupos taxonômicos da comunidade fitoplanctônica, (Microcystis aeruginosa, Anabaena crassa e Anabaena circinalis em Salto Grande e Aphanocapsa delicatissima, Coelastrum reticulatum e Aulacoseira granulata no Lobo) nos dois reservatórios foram determinados pelos complexos processos de estratificação e mistura e da disponibilidade de luz. Os resultados obtidos são importantes para o entendimento da variabilidade ambiental de reservatórios tropicais e no planejamento de amostragens que visem o gerenciamento desses sistemas. / The understanding of the phytoplanktonic community in unstable systems, like reservoirs, needs the knowledge of variability scales. Based on it, a study of the spatial heterogeneity and temporal variability in two reservoirs with different trophic levels in São Paulo State was performed in 20 stations of the Salto Grande reservoir and in 19 of Lobo reservoir, for 3 consecutive days, in four periods: October 1999, January, April, June, and July 2000. Total and dissolved nutrients, suspended material, inorganic carbon, chlorophyll, biomass, density, and phytoplanktonic community composition were determined. The two reservoirs showed similarities in their spatial structure with the formation of three distinct zones. The riverine zone, wish was mixed, showing less light penetration and higher nutrients concentration; the transistion zone and the lacustrine zone, which was more stratified, with higher light penetration and lower nutrients concentration. Despite this compartimentalization, the spatial heterogeneity in Salto Grande reservoir was larger than in Lobo reservoir, mainly in function of the longitudinal gradient of nutrients and light. The daily variability (3 days) in the two reservoirs was not significant in the phytoplanktonic community determination. The seasonal variability scale in the two reservoirs was determined, mainly due to the stratification and mixing variation patterns and was essential in the phytoplanktonic community composition. This influence was more evident in the Lobo reservoir. The temporal variation and spatial heterogeneity of the dominants species and taxonomic groups from the phytoplanktonic community, (Microcystis aeruginosa, Anabaena circinalis and Anabaena crassa in Salto Grande reservoir and Aphanocapsa delicatissima, Coelastrum reticulatum and Aulacoseira granulata in the Lobo) were determined by complex processes of stratification, mixing, and light availability in the two reservoirs. The results obtained are important for the understanding of the environmental variability of tropical reservoirs and for the planning of sampling aim at the management of these systems.
5

A comunidade fitoplanctônica no reservatório de Itupararanga (Bacia do Rio Sorocaba, SP) / Phytoplankton community of Itupararanga reservoirs (Sorocaba river basin, SP)

Casali, Simone Pereira 07 August 2014 (has links)
Reservatórios são sistemas aquáticos artificiais que reúnem propriedades semelhantes a rios e lagos, ou seja, eles possuem características dinâmicas horizontais de rios e verticais dos lagos. Devido a estas propriedades, muitos fatores são responsáveis pela distribuição e composição do fitoplâncton tais como: estabilidade da coluna de água, tempo de detenção hidráulico, operação da barragem, disponibilidade de nutrientes, RSFA (radiação solar fotossinteticamente ativa), temperatura. Nos últimos anos, devido às ações antrópicas, os reservatórios estão em processo de eutrofização, que contribui para o florescimento de Cianobactérias, que podem trazer problemas em mananciais e comprometer a saúde da população, pois estes organismos podem produzir toxinas extremamente agressivas. Com isso, torna-se importante o estudo da comunidade fitoplanctônica, no Reservatório de Itupararanga, pois ele é utilizado para recreação, irrigação, abastecimento público dos municípios de Votorantim e Sorocaba e geração de energia elétrica. O objetivo principal desta pesquisa é estudar a variabilidade temporal (variação sazonal, diária e nictemeral) e a heterogeniedade espacial (variação hotizontal e diferentes profundidades) e da comunidade fitoplanctônica e avaliar o potencial tóxico de espécies de Cianobactérias predominantes neste reservatório. Para atingir este objetivo foram realizadas coletas em dois pontos (próximo a barragem e na cabeceira), na estação chuvosa (fevereiro 2011) e seca (julho 2011), com amostragem de 4 em 4 horas, em 10 dias consecutivos e em diferentes profundidades da coluna de água. Foi realizada a caracterização da comunidade quanto a sua estrutura (biomassa e diversidade) e a análise de cianotoxinas (microcistina, cilindrospermopsina e saxitoxina) pelo método ELISA. Para relacionar com as variáveis biológicas foram analisadas variáveis hidrometeorológicas e abióticas. Durante o período estudado, o reservatório de Itupararanga pode ser classificado como polimítico, apresentando estratificação térmica no período chuvoso e circulação da coluna de água no período seco. No período estudado não foram observadas variações da estrutura da comunidade fitoplanctônica nas escalas diária e nictemeral, somente foi observada variação sazonal. A média da densidade fitoplanctônica total foi de 41,86x103 ind.mL-1, na estação chuvosa e 39,31x103 ind.mL-1, na seca. Foi observada alternância de dominância de duas esécies fitoplânctônicas, no período chuvoso houve dominância da Chlorophyceae Monoraphidium contortum, e no seco, da Cianobactéria Cylindrospermopsis raciborskii. Ocorreram altas relações entre nutrientes totais (NT:PT) e dissolvidos (NID:PTD), nos dois período estudados, observando-se assim que não houve limitação de nitrogênio. Não foram detectadas a presença de microcistina e cilindrospermopsina e as concentrações de saxitoxina estiveram abaixo do limite permitido pela Portaria MS n°2.914/2011 (3μg.L-1). Portanto, torna-se essencial a realização de um plano de manejo sustentável na bacia hidrográfica do Sorocaba e Médio Tietê, visando o monitoramento de ocorrência de Cianobactérias e cianotoxinas, para garantir a qualidade da água utilizada pela população do entorno do reservatório de Itupararanga. / Reservoirs are artificial aquatic systems which show similar features to lakes and rivers, like the dynamic horizontal characteristics of rivers and the vertical ones of lakes. Due to these properties, there are many factors which are responsible for the distribution and composition of phytoplankton, as there are: stability of the water column, hydraulic retention time, dam operation, availability of nutrients, photosynthetically active solar radiation (PASR), and temperature. As a result of human actions during the past years, the reservoirs are undergoing a process of eutrophication, and therefore contributing to the growth of cyanobacteria, causing problems for wells and thus compromising the health of the population, as these organisms can produce highly aggressive toxins. The study of phytoplankton in the Itupararanga Reservoirs has so become more and more important, as it is a place for recreation, irrigation, public water supply for the counties Votorantim and Sorocaba, and the generation of electricity. The objective of this research is to study the temporal variability (in a seasonal or daily context) and spatial heterogeneity (horizontal axle and diferents deep) in the phytoplankton and to evaluate the potential toxic of predominant cyanobacteria species in this reservoir. In order to reach this aim, a sample collection took place at two sites- one near the dam and the other near the headwaters- during the rainy season (February 2011) and the dry season (July 2011), at a rhythm of every four hours during 10 consecutive days at different depths of the water column. The Phytoplankton community was characterized in relation to its structure (biomass and diversity) and its analysis of cyanotoxins (microcrystin, cylindospermopsin and saxitoxin), using the ELISA method. In order to relate the biological variables, hydrometeorological and abiotic variables have been analyzed. During the studied period, the Itupararanga Reservoir could be classified as polymictic, showing thermal stratification in the rainy season and circulation of the water column in the dry season. Variations in the phytoplankton structure could not be observed on a daily but only a seasonal basis. The average total phytoplankton density was 41,86x103 ind.mL-1 in the rainy season, and in the dry season 39,31x103 ind.mL-1. Two phytoplankton species altered in their dominance, in the rainy season the Chlorophyceae Monoraphidium contortum showed more presence, whereas in the dry season Cyanobacteria Cylindrospermopsis raciborskii was found in a higher quantity. There was a high relation between the total nutrients (NT:PT) and the dissolved ones (NID:PTD), in both periods, as well as no limitation in the nitrogen level. Microcrystin and cylindrospermposin could not be detected, and the concentrations of saxitoxin were below the limit set by the Brazilian Ministry of Health - MS n°2.914/2011 (3μg.L-1). However, it is essential to achieving a sustainable management plan for the catchment of Sorocaba and Middle Tietê, aimed at monitoring the occurrence of cyanobacteria and cyanotoxins, to ensure the quality of the water used by the population around the Itupararanga Reservoir.
6

Microbial Risk Perspective on the Temporal and Spatial Variability of Indicator Bacteria in Texas Urban and Rural Watersheds

Srinivasan Ravichandran, Sriambharrish 2011 May 1900 (has links)
The high incidence of pathogens is one of the main causes for impaired surface water quality designations in the United States. Pathogen presence in fresh water is monitored through the detection of indicator bacteria. Indicator bacteria concentrations, spatial and temporal variability, and microbial risks were evaluated in two rural watersheds, the Bosque and Leon Rivers, and one predominantly urban watershed, the San Jacinto River, all in Texas. Human health risk was predicted from contaminated waters as indicated by ingestion of Escherichia coli found in surface water for contact recreation scenarios. The watersheds were chosen because many segments were previously placed on the 303 (d) list (published by the TCEQ) for failing the indicator bacteria standards. Predominantly urban areas of the San Jacinto River and rural portions of the Bosque and Leon Rivers, where Concentrated Animal Feeding Operations (CAFOs) are numerous, were compared to relatively pristine rural watersheds. Spatial analysis of the watersheds with E.coli concentrations exceeding the single sample (394 MPN/100mL) and the geometric mean standards (126 MPN/100mL) indicated that land use is a significant factor influencing the incidence of bacterial concentrations. Non-agricultural rural areas of the watersheds, such as forests and rangelands, had significantly lower E.coli concentrations compared to the agricultural areas and urban land uses. Human health risk due to ingestion of E.coli as an indicator organism indicated a similar pattern to that of their concentrations in that urban and agricultural areas had a greater risk compared to the other rural areas of the watersheds. The risk estimate for urban and agricultural areas exceeded the acceptable limit of one in ten thousand (10^-4), indicating a potential for adverse health effects to humans. Temporal variability in the watersheds as a function of streamflow, rainfall, and temperature indicated a positive correlation between bacterial concentration and high streamflow, rainfall and temperature. The positive correlation for these effects was greater in the rural areas compared to urban areas, indicating the presence of multiple factors responsible for E.coli concentrations in urban areas. Thus, land use was confirmed to be a major factor contributing to the presence of indicator bacteria in surface waters.
7

Response of Benthic Microalgal Community Composition at East Beach, Galveston Bay, Texas to Changes in Salinity and Nutrients

Lee, Alyce R. 2009 May 1900 (has links)
Benthic microalgal community composition on an ephemerally submerged sandflat at East Beach, Galveston Island, Texas was studied to determine the spatial and temporal variability of total biomass and community composition and its responses to experimental manipulations of two environmental factors (salinity and nutrients). Four field studies were conducted between August 2004 and February 2005. The community consisted of two major algal groups, diatoms, and cyanobacteria with two less abundant groups, green algae, and phototrophic bacteria. Spatial variability showed that patch sizes of 12 - 25 m were detected over larger scales with smaller scale (cm) patches of approximately 28 - 201 cm^-2 contained within the larger patches. The second study examined the spatio-temporal variability of BMA over a 21-month period in a 1,000 m^2 area. Sampling location and date explained a significant amount of the variability in the abundances of algal groups, which were positively correlated with the water content of the sediments and negatively correlated with temperature (sediment and water). All of the algal groups showed a seasonal pattern with higher abundances measured in the winter months and lower abundances found during the summer. BMA biomass (100 mg Chl a m^-2 or greater) maxima occurred at temperatures less than 22 degrees C and sediment water content greater than 15% (g water g sediment^-1). BMA response to different salinities and nutrient (N+P) amended sediments was assessed in four bioassays conducted over a 6-month period (Aug. 2004, Oct. 2004, Dec. 2004, and Feb. 2005). In the salinity study, the treatments that were either 100% or partially diluted with deionized water had the lowest BMA biomass over all. Chlorophyll a and fucoxanthin were significantly affected by salinity with higher abundances found in salinities that averaged 15 with a preference for salinities greater than 22. Chlorophyll b was affected by salinity with higher abundances measured in the treatments with lowest salinity (DL and DI); and was affected by the time of year. This would suggest that this algal group prefers an environment with salinity less than 2 but can easily adapt to environments with higher salinities. BMA abundances were not significantly affected by the nutrient amended sediment, but were significantly affected by stations with higher water content, and during the cooler months (Dec. 2004 and Feb. 2005).
8

Triclosan: Source Attribution, Urinary Metabolite Levels and Temporal Variability in Exposure Among Pregnant Women in Canada

Weiss, Lorelle D. 10 October 2013 (has links)
OBJECTIVE: To measure urinary triclosan levels and their variability across pregnancy, and to identify sources of triclosan exposure among Canadian pregnant women. METHODS: Single spot and serial urine samples, as well as consumer product use information were collected across pregnancy and post-partum from 80 healthy pregnant women in Ottawa. Analyses included descriptives, linear mixed effects and parametric trend modeling, and surrogate category analysis. RESULTS: Triclosan was detected in 87% of maternal urine samples (LOD=3.0 µg/L). Triclosan concentrations varied by time of day of urine collection (p=0.0006), season of sampling (p=0.019), and parity (p=0.038). Triclosan was included in 4% of all personal care products used by participants; 89% of these triclosan products were varying brands of toothpaste and hand soaps. CONCLUSION: This study provided the first data on temporal variability urinary triclosan levels, and on source attribution data in Canadian pregnant women. Results will assist with population-specific exposure assessment strategies.
9

Fine-scale temporal and spatial variability in the coastal waters of Clayoquot Sound

King, Stephanie 14 September 2010 (has links)
An oceanographic buoy with 10 atmospheric and oceanographic instruments was deployed in Clayoquot Sound on the west coast of Canada in 2007. The high-resolution time series was used to monitor the fine-scale variability in the coastal ocean. Over 700 CTD profiles measuring temperature, salinity and chlorophyll fluorescence made in the region of the buoy were used to relate the buoy data to spatial patterns. Analysis showed that large-scale upwelling in combination with the localized winds and tidal currents affect water properties at time scales of hours to days. At low tide the buoy represented inland water and at high tide the buoy represented offshore water. Both the buoy data and CTD profiles measured a strong offshore/onshore gradient. For temperature the gradient depended on the direction of the wind, salinity was always higher offshore compared to onshore, and the chlorophyll fluorescence was higher onshore in the early spring and higher offshore for the rest of the time series. The fine scale temporal resolution of the buoy was able to capture the variability measured by the CTD profiles in a 40km2 area. This work shows the importance of making high-resolution temporal measurements in the coastal ocean. However, these types of moorings also require frequent maintenance. In Clayoquot Sound, the optical sensors needed to be cleaned every 4-6 days.
10

A comunidade fitoplanctônica no reservatório de Itupararanga (Bacia do Rio Sorocaba, SP) / Phytoplankton community of Itupararanga reservoirs (Sorocaba river basin, SP)

Simone Pereira Casali 07 August 2014 (has links)
Reservatórios são sistemas aquáticos artificiais que reúnem propriedades semelhantes a rios e lagos, ou seja, eles possuem características dinâmicas horizontais de rios e verticais dos lagos. Devido a estas propriedades, muitos fatores são responsáveis pela distribuição e composição do fitoplâncton tais como: estabilidade da coluna de água, tempo de detenção hidráulico, operação da barragem, disponibilidade de nutrientes, RSFA (radiação solar fotossinteticamente ativa), temperatura. Nos últimos anos, devido às ações antrópicas, os reservatórios estão em processo de eutrofização, que contribui para o florescimento de Cianobactérias, que podem trazer problemas em mananciais e comprometer a saúde da população, pois estes organismos podem produzir toxinas extremamente agressivas. Com isso, torna-se importante o estudo da comunidade fitoplanctônica, no Reservatório de Itupararanga, pois ele é utilizado para recreação, irrigação, abastecimento público dos municípios de Votorantim e Sorocaba e geração de energia elétrica. O objetivo principal desta pesquisa é estudar a variabilidade temporal (variação sazonal, diária e nictemeral) e a heterogeniedade espacial (variação hotizontal e diferentes profundidades) e da comunidade fitoplanctônica e avaliar o potencial tóxico de espécies de Cianobactérias predominantes neste reservatório. Para atingir este objetivo foram realizadas coletas em dois pontos (próximo a barragem e na cabeceira), na estação chuvosa (fevereiro 2011) e seca (julho 2011), com amostragem de 4 em 4 horas, em 10 dias consecutivos e em diferentes profundidades da coluna de água. Foi realizada a caracterização da comunidade quanto a sua estrutura (biomassa e diversidade) e a análise de cianotoxinas (microcistina, cilindrospermopsina e saxitoxina) pelo método ELISA. Para relacionar com as variáveis biológicas foram analisadas variáveis hidrometeorológicas e abióticas. Durante o período estudado, o reservatório de Itupararanga pode ser classificado como polimítico, apresentando estratificação térmica no período chuvoso e circulação da coluna de água no período seco. No período estudado não foram observadas variações da estrutura da comunidade fitoplanctônica nas escalas diária e nictemeral, somente foi observada variação sazonal. A média da densidade fitoplanctônica total foi de 41,86x103 ind.mL-1, na estação chuvosa e 39,31x103 ind.mL-1, na seca. Foi observada alternância de dominância de duas esécies fitoplânctônicas, no período chuvoso houve dominância da Chlorophyceae Monoraphidium contortum, e no seco, da Cianobactéria Cylindrospermopsis raciborskii. Ocorreram altas relações entre nutrientes totais (NT:PT) e dissolvidos (NID:PTD), nos dois período estudados, observando-se assim que não houve limitação de nitrogênio. Não foram detectadas a presença de microcistina e cilindrospermopsina e as concentrações de saxitoxina estiveram abaixo do limite permitido pela Portaria MS n°2.914/2011 (3μg.L-1). Portanto, torna-se essencial a realização de um plano de manejo sustentável na bacia hidrográfica do Sorocaba e Médio Tietê, visando o monitoramento de ocorrência de Cianobactérias e cianotoxinas, para garantir a qualidade da água utilizada pela população do entorno do reservatório de Itupararanga. / Reservoirs are artificial aquatic systems which show similar features to lakes and rivers, like the dynamic horizontal characteristics of rivers and the vertical ones of lakes. Due to these properties, there are many factors which are responsible for the distribution and composition of phytoplankton, as there are: stability of the water column, hydraulic retention time, dam operation, availability of nutrients, photosynthetically active solar radiation (PASR), and temperature. As a result of human actions during the past years, the reservoirs are undergoing a process of eutrophication, and therefore contributing to the growth of cyanobacteria, causing problems for wells and thus compromising the health of the population, as these organisms can produce highly aggressive toxins. The study of phytoplankton in the Itupararanga Reservoirs has so become more and more important, as it is a place for recreation, irrigation, public water supply for the counties Votorantim and Sorocaba, and the generation of electricity. The objective of this research is to study the temporal variability (in a seasonal or daily context) and spatial heterogeneity (horizontal axle and diferents deep) in the phytoplankton and to evaluate the potential toxic of predominant cyanobacteria species in this reservoir. In order to reach this aim, a sample collection took place at two sites- one near the dam and the other near the headwaters- during the rainy season (February 2011) and the dry season (July 2011), at a rhythm of every four hours during 10 consecutive days at different depths of the water column. The Phytoplankton community was characterized in relation to its structure (biomass and diversity) and its analysis of cyanotoxins (microcrystin, cylindospermopsin and saxitoxin), using the ELISA method. In order to relate the biological variables, hydrometeorological and abiotic variables have been analyzed. During the studied period, the Itupararanga Reservoir could be classified as polymictic, showing thermal stratification in the rainy season and circulation of the water column in the dry season. Variations in the phytoplankton structure could not be observed on a daily but only a seasonal basis. The average total phytoplankton density was 41,86x103 ind.mL-1 in the rainy season, and in the dry season 39,31x103 ind.mL-1. Two phytoplankton species altered in their dominance, in the rainy season the Chlorophyceae Monoraphidium contortum showed more presence, whereas in the dry season Cyanobacteria Cylindrospermopsis raciborskii was found in a higher quantity. There was a high relation between the total nutrients (NT:PT) and the dissolved ones (NID:PTD), in both periods, as well as no limitation in the nitrogen level. Microcrystin and cylindrospermposin could not be detected, and the concentrations of saxitoxin were below the limit set by the Brazilian Ministry of Health - MS n°2.914/2011 (3μg.L-1). However, it is essential to achieving a sustainable management plan for the catchment of Sorocaba and Middle Tietê, aimed at monitoring the occurrence of cyanobacteria and cyanotoxins, to ensure the quality of the water used by the population around the Itupararanga Reservoir.

Page generated in 0.4562 seconds