• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis of the Residual Stress Distribution in Rolled Aluminum Plates after Tension Levelling

Lin, Jing-yu 09 September 2012 (has links)
When an aluminum alloy plate after rolling, non-uniform residual stress distributions existed inside the plate and defects, such as edge wave, middle wave, of the plate will be induced. Usually, a levelling process will be adopted to modify the plate flatness. By numerically simulating the tension levelling process, the purpose of this thesis is to understand the final dimensions and the residual stress distribution of the aluminum plate subjected to the tension levelling process. This study used the finite element method as the basic theory of the numerical simulation. A 3-D model of a cold-rolled plate with a side wave, subjected to tension levelling process was constructed. Then, the effects of the variations of the tensile ratio and residual stress distribution after rolled on the residual stress distribution after levelling and the improvement of flatness were studied. The simulation results showed that in the wave region, the tension levelling process could eliminate more than 90% of the residual stress, in the flat region was up to 80%.Also, after leveling, the residual stress distribution in the flat region was more uniform than the wave region. After-rolled residual stresses at the wave region affected the final peak position of the wave and the stress eliminated ratio of the wave region, but showed no significant effect on the final plate width and the residual strains. After-rolled residual stresses at the flat region affected the stress elimination ratio of the flat region only. The tensile ratio would affect the plate flatness, the plate width, stress elimination ratio, and the maximum residual stress. The higher of the tensile ratio, the more flatness of the plate would be obtained, but the higher residual strain would be induced and caused the lesser range of available plate.

Page generated in 0.1093 seconds