• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of numerical methods for some tensor equations

Liu, Dong Dong January 2018 (has links)
University of Macau / Faculty of Science and Technology. / Department of Mathematics
2

Quadratic scalar-tensor gravity

Davies, Trevor Bamidelé January 2017 (has links)
This thesis develops novel analytic models of scalar-tensor theories with quadratic coupling. In this framework, the coupling strength between scalar and matter is regulated in a way that allows the vacuum expectation value to vanish for low matter densities while becoming non-vanishingly large in the high-density regime. This results in significant deviations from the predictions of General Relativity in the strong-gravity regime. In astrophysics, we addressed the core-collapse supernova problem to account for the apparently missing energy required to explain the observed powerful explosions. We assumed a small, massless scalar gravitational field, thus allowing General Relativity to be recovered in the weak-gravity asymptotic limit. The non-trivial effects coming from the coupling function in the presence of a high-density field were analyzed at the instant of neutron star formation. Our results show that the scalar gravitational field evolves from a cosmological value to a new equilibrium via a Higgs-like mechanism. Additionally, the calculations associated with the gravitational binding energy shift and relevant relaxation timescale are explicitly shown. The full theory space of the model was also investigated for positive values of the coupling parameter. We studied a mechanism to address the stalled shock issue in core-collapse scenarios, which involved the application of sufficiently large positive values to the coupling parameter. Our results show that pulsating neutron stars act like optical cavities in which resonant scalar waves are parametrically amplified. It implies that the surface of a neutron star acts like an anti-phase reflector, releasing traveling scalar gravitational waves similar to an optical laser. In cosmology, the same framework was applied to a generic Friedman-Robertson-Walker universe involving general metric coupling and scalar potential functions. In cosmology, the same framework was applied to a generic Friedman-Robertson-Walker universe involving general metric coupling and scalar potential functions. We developed a mechanism which allowed the scalar field to be dynamically trapped, thus generating a potential capable of driving primordial inflation. Our results show that a trapped scalar field produces non-trivial dynamical consequences when applied to standard cosmology. Additionally, our analytic solutions for the generic inflationary behaviour, produce acceptable duration and e-foldings, thus recovering the Hubble parameter which is consistent with the present-day value. A feature of our cosmological model is that the universe can undergo several accelerating or decelerating phases, even though the scalar potential and metric coupling are monotonic functions overall. As this is important for the current dark energy problem, the quasi-static motion of the gravitational field induced by the scalar potential in the early universe, is investigated for a small value of the scalar field with normalized metric at the present time. Our results show that a variable Lambda Cold Dark Matter universe emerges naturally from the quadratic model.
3

Visual Analysis of Second and Third Order Tensor Fields in Structural Mechanics

Zobel, Valentin 23 May 2018 (has links)
This work presents four new methods for the analysis and visualization of tensor fields. The focus is on tensor fields which arise in the context of structural mechanics simulations. The first method deals with the design of components made of short fiber reinforced polymers using injection molding. The stability of such components depends on the fiber orientations, which are affected by the production process. For this reason, the stresses under load as well as the fiber orientations are analyzed. The stresses and fiber orientations are each given as tensor fields. For the analysis four features are defined. The features indicate if the component will resist the load or not, and if the respective behavior depends on the fiber orientation or not. For an in depth analysis a glyph was developed, which shows the admissible fiber orientations as well as the given fiber orientation. With these visualizations the engineer can rate a given fiber orientation and gets hints for improving the fiber orientation. The second method depicts gradients of stress tensors using glyphs. A thorough understanding of the stress gradient is desirable, since there is some evidence that not only the stress but also its gradient influences the stability of a material. Gradients of stress tensors are third order tensors, the visualization is therefore a great challenge and there is very little research on this subject so far. The objective of the third method is to analyse the complete invariant part of the tensor field. Scalar invariants play an important role in many applications, but proper selection of such invariants is often difficult. For the analysis of the complete invariant part the notion of 'extremal point' is introduced. An extremal point is characterized by the fact that there is a scalar invariant which has a critical point at this position. Moreover it will be shown that the extrema of several common invariants are contained in the set of critical points. The fourth method presented in this work uses the Heat Kernel Signature (HKS) for the visualization of tensor fields. The HKS is computed from the heat kernel and was originally developed for surfaces. It characterizes the metric of the surface under weak assumptions. i.e. the shape of the surfaces is determined up to isometric deformations. The fact that every positive definite tensor field can be considered as the metric of a Riemannian manifold allows to apply the HKS on tensor fields.
4

Convolution and Fourier Transform of Second Order Tensor Fields

Hlawitschka, Mario, Ebling, Julia, Scheuermann, Gerik 04 February 2019 (has links)
The goal of this paper is to transfer convolution, correlation and Fourier transform to second order tensor fields. Convolution of two tensor fields is defined using matrix multiplication. Convolution of a tensor field with a scalar mask can thus be described by multiplying the scalars with the real unit matrix. The Fourier transform of tensor fields defined in this paper corresponds to Fourier transform of each of the tensor components in the field. It is shown that for this convolution and Fourier transform, the well known convolution theorem holds and optimization in speed can be achieved by using Fast Fourier transform algorithms. Furthermore, pattern matching on tensor fields based on this convolution is described.
5

Conformal Vector Fields With Respect To The Sasaki Metric Tensor Field

Simsir, Muazzez Fatma 01 January 2005 (has links) (PDF)
On the tangent bundle of a Riemannian manifold the most natural choice of metric tensor field is the Sasaki metric. This immediately brings up the question of infinitesimal symmetries associated with the inherent geometry of the tangent bundle arising from the Sasaki metric. The elucidation of the form and the classification of the Killing vector fields have already been effected by the Japanese school of Riemannian geometry in the sixties. In this thesis we shall take up the conformal vector fields of the Sasaki metric with the help of relatively advanced techniques.

Page generated in 0.0466 seconds