Spelling suggestions: "subject:"tensorflow abject detection API"" "subject:"tensorflow abject 1detection API""
1 |
Object detection in refrigerators using TensorflowAgarwal, Kirti 02 January 2019 (has links)
Object Detection is widely used in many applications such as face detection, detecting
vehicles and pedestrians on streets, and autonomous vehicles. Object detection not only includes recognizing and classifying objects in an image, but also localizes those objects and draws bounding boxes around them. Therefore, most of the successful object detection networks make use of neural network based image classifiers in conjunction with object detection techniques. Tensorflow Object Detection API, an open source framework based on Google's TensorFlow, allows us to create, train and deploy object detection models.
This thesis mainly focuses on detecting objects kept in a refrigerator. To facilitate the object detection in a refrigerator, we have used Tensorflow Object Detection API to train and evaluate models such as SSD-MobileNet-v2, Faster R-CNN-ResNet-101, and R-FCN-ResNet-101. The models are tested as a) a pre-trained model and b) a fine-tuned model devised by fine-tuning the existing models with a training dataset for eight food classes extracted from the ImageNet database. The models are evaluated on a test dataset for the same eight classes derived from the ImageNet database to infer which works best for our application.
The results suggest that the performance of Faster R-CNN is the best on the test food dataset with a mAP score of 81.74%, followed by R-FCN with a mAP of 80.33% and SSD with a mAP of 76.39%. However, the time taken by SSD for detection is considerably less than the other two models which makes it a viable option for our objective. The results provide substantial evidence that the SSD model is the most suitable model for deploying object detection on mobile devices with an accuracy of 76.39%. Our methodology and results could potentially help other researchers to design a custom object detector and further enhance the precision for their datasets. / Graduate
|
2 |
Sémantický popis obrazovky embedded zařízení / Semantic description of the embedded device screenHorák, Martin January 2020 (has links)
Tato diplomová práce se zabývá detekcí prvků uživatelského rozhraní na obrázku displejetiskárny za použití konvolučních neuronových sítí. V teoretické části je provedena rešeršesoučasně používaných architektur pro detekci objektů. V praktické čísti je probrána tvorbagalerie, učení a vyhodnocování vybraných modelů za použití Tensorflow ObjectDetectionAPI. Závěr práce pojednává o vhodnosti vycvičených modelů pro zadaný úkol.
|
3 |
Automatická detekce ovládacích prvků výtahu zpracováním digitálního obrazu / Automatic detection of elevator controls using image processingČernil, Martin January 2021 (has links)
This thesis deals with the automatic detection of elevator controls in personal elevators through digital imaging using computer vision. The theoretical part of the thesis goes through methods of image processing with regards to object detection in image and research of previous solutions. This leads to investigation into the field of convolutional neural networks. The practical part covers the creation of elevator controls image dataset, selection, training and evaluation of the used models and the implementation of a robust algorithm utilizing the detection of elevator controls. The conclussion of the work discusses the suitability of the detection on given task.
|
Page generated in 0.1061 seconds