Spelling suggestions: "subject:"sensorial modelling"" "subject:"tensorial modelling""
1 |
Analyse scalaire et tensorielle de la refermeture des porosités en mise forme / Scalar and tensorial analysis of void closure during hot metal formingChbihi, Abdelouahed 03 December 2018 (has links)
La présence de porosités dans les lingots métalliques représente un problème majeur dans l’industrie des matériaux. En effet, ces porosités altèrent significativement les caractéristiques mécaniques du matériau (ductilité notamment), et sont des sources d’apparition de défauts en mise en forme ou en tenue en service. Pour éliminer ces porosités, les industriels utilisent souvent des procédés de mise forme à chaud tels que le forgeage ou le laminage, mais il est souvent difficile de définir le taux de déformation à appliquer pour refermer entièrement ces porosités. La modélisation numérique s’avère donc être un outil particulièrement intéressant afin d’étudier l’impact des paramètres procédé sur le taux de refermeture de porosités. Dans ce travail, nous avons développé une méthodologie de calibration basée sur des algorithmes d’optimisation et une base de données de 800 simulations à champ complet sur VER, où les paramètres influents sur la refermeture des porosités sont variés (mécaniques et géométriques). Le premier modèle proposé est un modèle scalaire qui s’affranchit de l’hypothèse de chargement axisymétrique, largement utilisée dans la littérature. Le paramètre de Lode a permis avec l’utilisation de la triaxialité des contraintes de définir l’état de contraintes d’une manière unique. Les comparaisons de ce nouveau modèle à trois autres modèles de refermeture de la littérature montrent le gain de précision de ce nouveau modèle scalaire de refermeture. Le deuxième modèle est un modèle tensoriel adapté aux procédés multipasses grâce à l’analyse de la matrice d’inertie de la porosité. Cette matrice sert pour calculer le volume, la forme et l’orientation de la porosité. Ce modèle a été calibré en utilisant une approche basée sur les réseaux de neurones artificiels. La comparaison avec le modèle scalaire et la modélisation en champ complet a montré un gain en précision jusqu’à 35%. Il s’agit là par ailleurs du premier modèle tensoriel proposé dans la littérature. / The presence of voids in ingots is a major issue in the casting industry. These voids decrease materials properties (in particular ductility) and may induce premature failure during metal forming or service life. Hot metal forming processes are therefore used to close these voids and obtain a sound product. However, the amount of deformation required to close these voids is difficult to estimate.Numerical modeling is an interesting tool to study the influence of process parameters on void closure rate. In this work, an optimization-based strategy has been developed to identify the parameters of a mean-field model based on a database of 800 full-field REV simulations with various loading conditions and voids geometry and orientations. The first void closure model is a scalar model that gets rid of the axisymmetric loading hypothesis considered in most models in the literature. The Lode angle, coupled with the stress triaxiality ratio enables to identify the stress state in a unique way. Comparisons of this new model with three other models fromthe literature show the accuracy increase for general loading conditions. In order to address multistages processes, a second model is defined in a tensor version. The ellipsoid void inertia matrix is used to define void’s morphology, orientation and volume. The tensor model predicts the evolution of the inertia terms and its calibration is based on the full-field REV database and on a new Artificial Neural Networks approach. Comparisons were carried out between this tensor model, the scalar model and full-field simulations for multi-stages configurations. These comparisons showed up to 35% accuracy improvement with the tensor model. It is worth mentioning that this is the first attempt to define a void closure tensor model in the literature.
|
Page generated in 0.0654 seconds