• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espectroscopia de reflectância in situ na avaliação da resposta da adubação nitrogenada em cana-de-açúcar / In situ reflection spectroscopy in the evaluation of the sugarcane nitrogen response

Tavares, Tiago Rodrigues 09 February 2017 (has links)
Na agricultura, técnicas de sensoriamento são um meio prático e barato de se obter informações sobre parâmetros de interesse agronômico, sendo os sensores ópticos uma alternativa para a avaliação da resposta de culturas agrícolas à sua adubação nitrogenada. Para a otimização da eficiência do uso de nitrogênio por culturas agrícolas, algumas estratégias de adubação se baseiam na coleta de dados espectrais em alta frequência no campo, utilizando-os para entender a variabilidade espacial do estado de nutrição da planta com este nutriente. Para a cana-de-açúcar, apesar da efetividade de sensores ópticos em idenificar alguns parâmetros desta cultura, ainda há a dificuldade de estabelecer relações com o seu Teor Foliar de Nitrogênio (TFN). Neste contexto, o presente trabalho acompanhou com sensor óptico hiperespectral (VisNIR) o desenvolvimento do dossel de cana-de-açúcar ao longo de seu ciclo, com o objetivo de avaliar temporalmente a relação entre a sua resposta espectral de reflectância e o seu TFN. Para tanto, foi avaliada uma área experimental com 28 parcelas de cana-deaçúcar, submetidas a tratamentos com diferentes doses de adubação nitrogenada. Ao longo do ciclo da cultura, avaliou-se a sua altura, o TFN e a sua resposta espectral de 400 a 900 nm; ao final do ciclo, foi estimada também a produtividade final de cada parcela. Para a avaliação do comportamento espectral da cultura em função da adubação nitrogenada e de seu desenvolvimento no campo, primeiramente, realizaramse análises de variância (ANOVA) para a altura, o TFN e as diferentes regiões espectrais e, em um segundo momento, análises descritivas e a análise de componentes principais foram conduzidas, ambas sobre os dados espectrais. Em seguida, foram aplicadas diferentes metodologias para a análise quantitativa dos espectros para a predição do TFN. Nessas análises quantitativas, buscou-se avaliar o período ideal do desenvolvimento da cana-de-açúcar para avaliações espectrais de seu TFN serem aplicadas, assim como comprimentos de onda e índices de vegetação (IVs) específicos com relações satisfatórias com o TFN. Os resultados obtidos pelo presente trabalho mostraram possível uma razoável predição do TFN da cana-de-açúcar através de espectroscopia in situ, contudo, esta avaliação só foi possível ao redor de 144 Dias Após o Corte (DAC), momento em que a cultura ainda apresentava resposta do TFN à adubação nitrogenada e no qual o dossel de plantas já estava desenvolvido o suficiente para interromper a influência do solo na leitura espectral. Os IVs avaliados que mais se destacaram para a predição do TFN utilizaram os comprimentos de onda de 490 nm da região do verde; 590 nm da região do laranja; 647 e 652 nm da região do vermelho; 730 nm da região do red-edge; 780 e 880 nm da região do infravermelho próximo. Por fim, o IV que mais se destacou foi o NDRE, índice já sugerido pela literatura com bons resultados para a determinação da biomassa da cana-de-açúcar. / In agriculture, sensing techniques are a practical and inexpensive way to obtain information on agronomic parameters. Optical sensors can be used as a tool to evaluate the response of agricultural crops to nitrogen (N) fertilization. In order to optimize the efficiency of N use in agricultural crops, some fertilization strategies are based on the collection and analysis of high frequency spectral data in the field to understand the spatial variability of N status of plants. Despite the effectiveness of optical sensors in identifying some agronomic parameters of the sugarcane, establishing relations between these data and the Leaf Nitrogen Content (TFN) of the sugarcane is still quite challenging. To address this issue, in this work the development of the sugarcane canopy was monitored during its cycle with a hyperspectral optical sensor (VisNIR), with the aim of evaluating the relations between its spectral reflectance response and its TFN in time. For this, an experimental area with 28 plots of sugarcane submitted to treatments with different doses of nitrogen fertilization was evaluated. Throughout the crop year were evaluated its height, TFN and spectral response from 400 to 900 nm; at the end of the cycle, the final yield of each plot was also evaluated. To begin with, the analysis of variance (ANOVA) for height, TFN and the different spectral regions was performed to assess the spectral behavior of the crop as a function of nitrogen fertilization and its development in the field. Furthermore, a descriptive analysis and analysis of principal components were conducted, both on spectral data. In addition to this, different methodologies were applied for the spectral quantitative analysis for the prediction of TFN. The aim of these quantitative analyses was to determine the ideal period of sugarcane development in order to apply spectral evaluations of its TFN and to find specific wavelengths and Vegetation Index (IVs) with satisfactory relations with the TFN. The results obtained by the present work showed a reasonable prediction of the sugarcane TFN by in situ spectroscopy. However, this evaluation was only possible around 144 Days After Harvest (DAC). During this period, the culture showed a response of the TFN to N fertilization and the canopy of plants was already developed enough to interrupt the influence of the soil in the spectral reading. The evaluated IVs that showed better results for the TFN prediction used the wavelengths 490 nm of the green region; 590 nm of the orange region; 647 and 652 nm of the red region; 730 nm of the red-edge region and; 780 and 880 nm of the near infrared region. The IV that showed the best result for the TFN prediciton was the NDRE, vegetation index, which was already suggested by the literature with good results for the determination the sugarcane biomass.
2

Espectroscopia de reflectância in situ na avaliação da resposta da adubação nitrogenada em cana-de-açúcar / In situ reflection spectroscopy in the evaluation of the sugarcane nitrogen response

Tiago Rodrigues Tavares 09 February 2017 (has links)
Na agricultura, técnicas de sensoriamento são um meio prático e barato de se obter informações sobre parâmetros de interesse agronômico, sendo os sensores ópticos uma alternativa para a avaliação da resposta de culturas agrícolas à sua adubação nitrogenada. Para a otimização da eficiência do uso de nitrogênio por culturas agrícolas, algumas estratégias de adubação se baseiam na coleta de dados espectrais em alta frequência no campo, utilizando-os para entender a variabilidade espacial do estado de nutrição da planta com este nutriente. Para a cana-de-açúcar, apesar da efetividade de sensores ópticos em idenificar alguns parâmetros desta cultura, ainda há a dificuldade de estabelecer relações com o seu Teor Foliar de Nitrogênio (TFN). Neste contexto, o presente trabalho acompanhou com sensor óptico hiperespectral (VisNIR) o desenvolvimento do dossel de cana-de-açúcar ao longo de seu ciclo, com o objetivo de avaliar temporalmente a relação entre a sua resposta espectral de reflectância e o seu TFN. Para tanto, foi avaliada uma área experimental com 28 parcelas de cana-deaçúcar, submetidas a tratamentos com diferentes doses de adubação nitrogenada. Ao longo do ciclo da cultura, avaliou-se a sua altura, o TFN e a sua resposta espectral de 400 a 900 nm; ao final do ciclo, foi estimada também a produtividade final de cada parcela. Para a avaliação do comportamento espectral da cultura em função da adubação nitrogenada e de seu desenvolvimento no campo, primeiramente, realizaramse análises de variância (ANOVA) para a altura, o TFN e as diferentes regiões espectrais e, em um segundo momento, análises descritivas e a análise de componentes principais foram conduzidas, ambas sobre os dados espectrais. Em seguida, foram aplicadas diferentes metodologias para a análise quantitativa dos espectros para a predição do TFN. Nessas análises quantitativas, buscou-se avaliar o período ideal do desenvolvimento da cana-de-açúcar para avaliações espectrais de seu TFN serem aplicadas, assim como comprimentos de onda e índices de vegetação (IVs) específicos com relações satisfatórias com o TFN. Os resultados obtidos pelo presente trabalho mostraram possível uma razoável predição do TFN da cana-de-açúcar através de espectroscopia in situ, contudo, esta avaliação só foi possível ao redor de 144 Dias Após o Corte (DAC), momento em que a cultura ainda apresentava resposta do TFN à adubação nitrogenada e no qual o dossel de plantas já estava desenvolvido o suficiente para interromper a influência do solo na leitura espectral. Os IVs avaliados que mais se destacaram para a predição do TFN utilizaram os comprimentos de onda de 490 nm da região do verde; 590 nm da região do laranja; 647 e 652 nm da região do vermelho; 730 nm da região do red-edge; 780 e 880 nm da região do infravermelho próximo. Por fim, o IV que mais se destacou foi o NDRE, índice já sugerido pela literatura com bons resultados para a determinação da biomassa da cana-de-açúcar. / In agriculture, sensing techniques are a practical and inexpensive way to obtain information on agronomic parameters. Optical sensors can be used as a tool to evaluate the response of agricultural crops to nitrogen (N) fertilization. In order to optimize the efficiency of N use in agricultural crops, some fertilization strategies are based on the collection and analysis of high frequency spectral data in the field to understand the spatial variability of N status of plants. Despite the effectiveness of optical sensors in identifying some agronomic parameters of the sugarcane, establishing relations between these data and the Leaf Nitrogen Content (TFN) of the sugarcane is still quite challenging. To address this issue, in this work the development of the sugarcane canopy was monitored during its cycle with a hyperspectral optical sensor (VisNIR), with the aim of evaluating the relations between its spectral reflectance response and its TFN in time. For this, an experimental area with 28 plots of sugarcane submitted to treatments with different doses of nitrogen fertilization was evaluated. Throughout the crop year were evaluated its height, TFN and spectral response from 400 to 900 nm; at the end of the cycle, the final yield of each plot was also evaluated. To begin with, the analysis of variance (ANOVA) for height, TFN and the different spectral regions was performed to assess the spectral behavior of the crop as a function of nitrogen fertilization and its development in the field. Furthermore, a descriptive analysis and analysis of principal components were conducted, both on spectral data. In addition to this, different methodologies were applied for the spectral quantitative analysis for the prediction of TFN. The aim of these quantitative analyses was to determine the ideal period of sugarcane development in order to apply spectral evaluations of its TFN and to find specific wavelengths and Vegetation Index (IVs) with satisfactory relations with the TFN. The results obtained by the present work showed a reasonable prediction of the sugarcane TFN by in situ spectroscopy. However, this evaluation was only possible around 144 Days After Harvest (DAC). During this period, the culture showed a response of the TFN to N fertilization and the canopy of plants was already developed enough to interrupt the influence of the soil in the spectral reading. The evaluated IVs that showed better results for the TFN prediction used the wavelengths 490 nm of the green region; 590 nm of the orange region; 647 and 652 nm of the red region; 730 nm of the red-edge region and; 780 and 880 nm of the near infrared region. The IV that showed the best result for the TFN prediciton was the NDRE, vegetation index, which was already suggested by the literature with good results for the determination the sugarcane biomass.
3

Análise hiperespectral de folhas de Brachiaria brizantha cv. Marandú submetidas a doses crescentes de nitrogênio / Hyperspectral analysis of Brachiaria brizantha cv. Marandú leaves under contrasting nitrogen levels

Takushi, Mitsuhiko Reinaldo Hashioka 14 February 2019 (has links)
O sensoriamento remoto é uma estratégia que pode ajudar no monitoramento da qualidade das pastagens. Objetivou-se com esse estudo analisar a resposta espectral das folhas de Brachiaria brizantha cv. Marandú, adubada com doses crescentes de ureia, para diferenciar e predizer teores foliares de nitrogênio (TFN). Os tratamentos foram distribuídos em blocos ao acaso (DBC), composto por quatro blocos e quatro tratamentos, totalizando 16 parcelas. Foram utilizadas doses crescentes de adubação com ureia: 0, 25, 50, 75 kg de N/ha/corte. Ao longo do experimento foram realizadas 7 coletas, sendo coletadas 8 folhas por parcela. Essas folhas foram submetidas à análise hiperespectral e posterior análise química do teor de nitrogênio. Ao analisar a resposta espectral das folhas, observou-se diferenças estatísticas entre os tratamentos na região do visível em todas as coletas, com ênfase na região de 550 nm (verde). Por meio de análise discriminante linear (LDA) realizada para cada coleta, os centróides gerados por todos os tratamentos apresentaram diferenças significativas, com exceção do LD1 nas coletas 6 e 7 que não apresentou distinção entre os tratamentos de 50 e 75 kg de N/ha/corte, e LD2 na coleta 5 que não apresentou distinção entre os tratamentos de 0 e 50 kg de N/ha/corte. As equações de regressão multivariada obtidas pelo método de quadrados mínimos parciais (PLSR), geraram valores razoáveis a bons de R2 (0,53 a 0,83) na predição dos TFN, onde os comprimentos de onda com maior peso nessas regressões estão na região do red edge (715 a 720 nm). Por fim, ao testar a performance de alguns Índices de Vegetação da literatura, as coletas 4, 6 e 7 apresentaram bons coeficientes de determinação (R2) que variaram de 0,65 a 0,73; uma característica em comum nos índices que melhor estimaram os TFN é a presença de comprimentos de ondas que fazem parte da região do red edge. / Remote sensing is a set of techniques that can help to monitor pasture quality. The object of this study is to analyze the spectral response from Brachiaria brizantha cv. Marandú leaves, under contrasting nitrogen levels, to differentiate and predict leaf nitrogen content. The treatments were set in a Randomized Block Design, composed of four blocks and four treatments, totaling 16 plots. Increasing doses of urea fertilization were used: 0, 25, 50, 75 kg N/ha/mowing. During the experiment, 7 data collections were performed, and 8 leaves per plot were extracted for each data collection. These leaves were submitted to hyperspectral data extraction and subsequent chemical analysis to quantify the nitrogen content. When analyzing the spectral pattern of the leaves, statistical differences among samples with different nitrogen levels were noticeable in the visible range of the spectrum in all the collections, with emphasis on the 550 nm region (green). Through linear discriminant analysis (LDA), performed for each collection, the generated centroids by the samples of each nitrogen level presented significant differences, except for LD1 in collections 6 and 7, which did not present a distinction between treatments of 50 and 75 kg of N/ha/mowing, and LD2 in collection 5 that did not distinguish between treatments of 0 and 50 kg of N/ha/mowing. The partial least square regression (PLSR) method generated reasonable to good values of R2 (0.53 to 0.83) for the prediction of leaf nitrogen content, where the wavelengths with the highest coefficient in these models are in the red edge region of the spectrum (715 to 720 nm). Finally, when testing the performance of some Vegetation Indexes from literature, collections 4, 6 and 7 presented good determination coefficients (R2) ranging from 0.65 to 0.73; a common feature in the indexes that best estimate the nitrogen content is the presence of wavelengths from the red edge region of the spectrum.

Page generated in 0.0603 seconds