• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoria cin?tica n?o extensiva: efeitos f?sicos em gases e plasmas

Silva Junior, Raimundo 02 June 2000 (has links)
Made available in DSpace on 2014-12-17T15:14:55Z (GMT). No. of bitstreams: 1 RaimundoSJ_TESE.pdf: 3254463 bytes, checksum: 4074255a5e079141be263458f0a6475e (MD5) Previous issue date: 2000-06-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases / A teoria cin?tica padr?o para um g?s dilu?do n?o relativ?stico, ? generalizada no esp?rito da distribui??o estat?stica n?o-extensiva introduzida por Tsallis. O novo formalismo depende de um par?metro arbitr?rio q medindo o grau de n?o extensividade do sistema. No limite q = 1, a teoria extensiva de Maxwell-Boltzmann ? recuperada. Iniciando com uma dedu??o puramente cin?tica da q-distribui??o de velocidades, o teorema-H de Boltzmann ? generalizado para incluir a possibilidade de efeitos n?o extensivos fora de equil?brio. Com base nesse estudo, demonstramos que a q-distribui??o de Tsallis ? uma condi??o necess?ria e suficiente para o equil?brio termodin?mico no regime n?o extensivo. Um resultado que segue naturalmente da equa??o de transporte generalizada e do novo teorema. Duas aplica??es dos efeitos n?o-extensivos s?o consideradas. Express?es anal?ticas s?o obtidas para o q-alargamento Doppler das linhas espectrais de um g?s excitado e tamb?m para as rela??es de dispers?o descrevendo as oscila??es eletrost?ticas num plasma eletr?nico dilu?do. No segundo caso, uma compara??o com os resultados experimentais sugere fortemente uma distribui??o de Tsallis com par?metro q < 1. Um estudo complementar est? relacionado com a termodin?mica de um fluido imperfeito relativ?stico. Utilizando a termodin?mica fora de equil?brio, n?s calculamos como as vari?veis prim?rias b?sicas: o tensor de energia-momento, o fluxo de part?culas e o de entropia dependem dos mais variados processos dissipativos. A taxa de varia??o da temperatura do fluido em movimento ? obtida, e as formula??es de Eckart e Landau-Lifshitz s?o recuperadas como casos particulares

Page generated in 0.6448 seconds