• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 18
  • 18
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grupos amenos e o paradoxo de Banach-Tarski

Bucurú, Jhon Fredy Tavera January 2015 (has links)
Resumo não disponível
2

Grupos amenos e o paradoxo de Banach-Tarski

Bucurú, Jhon Fredy Tavera January 2015 (has links)
Resumo não disponível
3

Grupos amenos e o paradoxo de Banach-Tarski

Bucurú, Jhon Fredy Tavera January 2015 (has links)
Resumo não disponível
4

S-convolução e o operador de transferência generalizado

Barchinski, Lucas Spillere January 2016 (has links)
Nesta tese apresentamos uma variação do conceito de convolução de medidas. Tratase da S-convolução, uma operação derivada da convolução usual, porém não-associativa e não-comutativa. Exploramos suas principais propriedades e suas relações com caracteres do grupo (Z=pZ)N. Utilizando tais relações, diagonalizamos algumas matrizes Bloco-Hankel. Na segunda parte da tese, de nimos o operador de transferência generalizado, inspirados na de nição de subshift generalizado desenvolvida, por exemplo, nos trabalhos de Gromov em [5] e de Friedland em [3]. Nesse contexto, provamos o Teorema de Ruelle-Perron-Frobenius. / In this thesis we present a variation of concept of the convolution measure. This is a S-convolution, a derived operation of the usual convolution, but noncommutative and nonassociative. We have explored its main properties and its relationship with characters of the (Z=pZ)N group. Using such relations, we have diagonalized some Bloco-Hankel matrices. In the second part of this thesis, we have de ned a generalized transfer operator, inspired by the de nition of the generalized subshift developed, for example, in the works of Gromov in [5] and Friedland in [3]. In this context, we have proved the Ruelle-Perron-Frobenius Theorem.
5

S-convolução e o operador de transferência generalizado

Barchinski, Lucas Spillere January 2016 (has links)
Nesta tese apresentamos uma variação do conceito de convolução de medidas. Tratase da S-convolução, uma operação derivada da convolução usual, porém não-associativa e não-comutativa. Exploramos suas principais propriedades e suas relações com caracteres do grupo (Z=pZ)N. Utilizando tais relações, diagonalizamos algumas matrizes Bloco-Hankel. Na segunda parte da tese, de nimos o operador de transferência generalizado, inspirados na de nição de subshift generalizado desenvolvida, por exemplo, nos trabalhos de Gromov em [5] e de Friedland em [3]. Nesse contexto, provamos o Teorema de Ruelle-Perron-Frobenius. / In this thesis we present a variation of concept of the convolution measure. This is a S-convolution, a derived operation of the usual convolution, but noncommutative and nonassociative. We have explored its main properties and its relationship with characters of the (Z=pZ)N group. Using such relations, we have diagonalized some Bloco-Hankel matrices. In the second part of this thesis, we have de ned a generalized transfer operator, inspired by the de nition of the generalized subshift developed, for example, in the works of Gromov in [5] and Friedland in [3]. In this context, we have proved the Ruelle-Perron-Frobenius Theorem.
6

S-convolução e o operador de transferência generalizado

Barchinski, Lucas Spillere January 2016 (has links)
Nesta tese apresentamos uma variação do conceito de convolução de medidas. Tratase da S-convolução, uma operação derivada da convolução usual, porém não-associativa e não-comutativa. Exploramos suas principais propriedades e suas relações com caracteres do grupo (Z=pZ)N. Utilizando tais relações, diagonalizamos algumas matrizes Bloco-Hankel. Na segunda parte da tese, de nimos o operador de transferência generalizado, inspirados na de nição de subshift generalizado desenvolvida, por exemplo, nos trabalhos de Gromov em [5] e de Friedland em [3]. Nesse contexto, provamos o Teorema de Ruelle-Perron-Frobenius. / In this thesis we present a variation of concept of the convolution measure. This is a S-convolution, a derived operation of the usual convolution, but noncommutative and nonassociative. We have explored its main properties and its relationship with characters of the (Z=pZ)N group. Using such relations, we have diagonalized some Bloco-Hankel matrices. In the second part of this thesis, we have de ned a generalized transfer operator, inspired by the de nition of the generalized subshift developed, for example, in the works of Gromov in [5] and Friedland in [3]. In this context, we have proved the Ruelle-Perron-Frobenius Theorem.
7

Convergência da convolução de probabilidades invariantes pelo deslocamento

Uggioni, Bruno Brogni January 2016 (has links)
Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N. / This thesis was inspired by the Lindenstrauss' article [10] and the fundamental work of Furstenberg [5]. Let (Z=pZ)N be the compact group which is the cartesian product of in nite copies of the nite group Z=pZ and be the shift function on (Z=pZ)N.
8

Álgebras de operadores, esperança condicional e a Entropia de Connes-Stormer

Proença, Rodrigo Bissacot January 2005 (has links)
Neste trabalho fazemos um breve estudo de Álgebras de Operadores, mais especificamente Álgebras-C* e Álgebras de von Neumann. O objetivo é expor alguns resultados que seriam os análogos não-comutativos de teoremas em Teoria da Medida e Teoria Rrgódica. Inicialmente, enunciamos alguns resultados de Análise Funcional e Teoria Espectral, muitos destes sendo demonstrados, com ênfase especial aos que dizem respeito µas álgebras. Com isso, dispomos das ferramentas necessárias para falarmos de alguns tópicos da então chamada Teoria da Integração Não-Comutativa. Uma desigualdade tipo Jensen é provada e, com o teorema de Radon-Nikodym para funcionais normais positivos, construimos uma esperança condicional, provando que esta possui as mesmas propriedades da esperança condicional da Teoria das Probabilidades. Dada a Esperança Condicional, objeto este que faz parte do cenário atual de pesquisa na área de Álgebra de Operadores e que está relacionado com resultados fundamentais tal como o Índice de Jones, passamos à definição da Entropia de Connes-Stormer. Finalizamos o trabalho analisando esta entropia, que é a versão para as álgebras de von Neumann da entropia Kolmogorov-Sinai em Teoria Ergódica. Provamos algumas pro- priedades que são análogas às do conceito clássico de entropia e indicamos uma aplicação da mesma. O texto não possui resultados originais, trata-se apenas de uma releitura de artigos usando versões mais recentes de alguns teoremas.
9

Convergência da convolução de probabilidades invariantes pelo deslocamento

Uggioni, Bruno Brogni January 2016 (has links)
Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N. / This thesis was inspired by the Lindenstrauss' article [10] and the fundamental work of Furstenberg [5]. Let (Z=pZ)N be the compact group which is the cartesian product of in nite copies of the nite group Z=pZ and be the shift function on (Z=pZ)N.
10

Álgebras de operadores, esperança condicional e a Entropia de Connes-Stormer

Proença, Rodrigo Bissacot January 2005 (has links)
Neste trabalho fazemos um breve estudo de Álgebras de Operadores, mais especificamente Álgebras-C* e Álgebras de von Neumann. O objetivo é expor alguns resultados que seriam os análogos não-comutativos de teoremas em Teoria da Medida e Teoria Rrgódica. Inicialmente, enunciamos alguns resultados de Análise Funcional e Teoria Espectral, muitos destes sendo demonstrados, com ênfase especial aos que dizem respeito µas álgebras. Com isso, dispomos das ferramentas necessárias para falarmos de alguns tópicos da então chamada Teoria da Integração Não-Comutativa. Uma desigualdade tipo Jensen é provada e, com o teorema de Radon-Nikodym para funcionais normais positivos, construimos uma esperança condicional, provando que esta possui as mesmas propriedades da esperança condicional da Teoria das Probabilidades. Dada a Esperança Condicional, objeto este que faz parte do cenário atual de pesquisa na área de Álgebra de Operadores e que está relacionado com resultados fundamentais tal como o Índice de Jones, passamos à definição da Entropia de Connes-Stormer. Finalizamos o trabalho analisando esta entropia, que é a versão para as álgebras de von Neumann da entropia Kolmogorov-Sinai em Teoria Ergódica. Provamos algumas pro- priedades que são análogas às do conceito clássico de entropia e indicamos uma aplicação da mesma. O texto não possui resultados originais, trata-se apenas de uma releitura de artigos usando versões mais recentes de alguns teoremas.

Page generated in 0.0548 seconds