Spelling suggestions: "subject:"deoria dda ressonância adaptative"" "subject:"deoria daa ressonância adaptative""
1 |
Desenvolvimento de redes neurais para previsão de cargas elétricas de sistemas de energia elétricaLopes, Mara Lúcia Martins [UNESP] 27 October 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:52Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-10-27Bitstream added on 2014-06-13T20:00:56Z : No. of bitstreams: 1
lopes_mlm_dr_ilha.pdf: 1509538 bytes, checksum: 3842df54e0429972a030219c885bd09a (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nos dias atuais, principalmente pelo fato de alguns sistemas serem desregulamentados, o estudo dos problemas de análise, planejamento e operação de sistemas de energia elétrica é de extrema importância para o funcionamento do sistema. Para isso é necessário que se obtenha, com antecedência, o comportamento da carga elétrica com o propósito de garantir o fornecimento de energia aos consumidores de forma econômica, segura e contínua. Este trabalho propõe o desenvolvimento de redes neurais artificiais utilizadas para resolver o problema de previsão de cargas elétricas. Para tanto, inicialmente, propôs-se a introdução de melhorias na rede neural feedforward com treinamento realizado utilizando o algoritmo retropropagação. Neste caso, foi desenvolvida/implementada a adaptação dos parâmetros de inclinação e translação da função sigmóide (função de ativação da rede neural). A inclusão desta nova estrutura de redes neurais produziu melhores resultados, se comparado à rede neural retropropagação convencional. Essas arquiteturas proporcionam bons resultados, porém, são estruturas de redes neurais que possuem o problema de convergência. O problema de previsão de cargas elétricas a curto-prazo necessita de uma rede neural que forneça uma saída de forma rápida e eficaz. No intuito de solucionar os problemas encontrados com o algoritmo retropropagação foi desenvolvida/implementada uma rede neural baseada na arquitetura ART (Adaptive Rossonance Theory), denominada rede neural ART&ARTMAP nebulosa, aplicada ao problema de previsão de carga elétrica. Trata-se, por conseguinte, da principal contribuição desta tese. As redes neurais, baseadas na arquitetura ART, possuem duas características fundamentais que são de extrema importância para o desempenho da rede (estabilidade e plasticidade), que permite a implementação do treinamento de modo contínuo... / Nowadays due to the deregulamentation it is very important to study the problems of analyzing, planning and operation of electric power systems. For a reliable operation it is necessary to know previously the behavior of the load to guarantee the energy providing to the users with security and continuity and in an economic way. This work proposes to develop artificial neural networks to solve the problem of electric load forecasting. First, it is introduced some improvements on the feedforward neural network, with the training effectuated with the backpropagation algorithm. The improvement was the adaptation of the inclination and translation parameters of the sigmoid function (activation function of the neural network). The inclusion of this new structure provides better results if compared to the conventional backpropagation algorithm. These architectures provide good results, although they are structures that have some convergence problems. The short term electric load forecasting problem needs a neural network that provide a fast and efficient output. To solve this problem a neural network based on the ART (Adaptive Ressonance Theory), called_ fuzzy ART&ARTMAP applied to the load-forecasting problem, was developed and implemented._This is one of the contributions of this work. Neural networks based on the ART architecture have two important characteristics for the network performance, which are stability and plasticity, allowing the continuous training. The fuzzy ART&ARTMAP neural network reduces the imprecision of the results by a mechanism that separates the binary and analogical data and processing them separately. This represents a quality and an improvement on the results (reduction of the processing time and better precision), if compared to the neural network with backpropagation training (often considered as a benchmark in precision by the specialized...(Complete abastract click electronic access below)
|
2 |
Rede ARTMAP Euclidiana utilizada na solução do problema de previsão de cargas elétricas / Euclidian ARTMAP network used in the solution of the electric load forecasting problemGomes, Tânia Tenório 22 December 2017 (has links)
Submitted by TÂNIA TENÓRIO GOMES (taniatgs@yahoo.com.br) on 2018-01-23T18:19:50Z
No. of bitstreams: 1
Tania_dissertação_dee_22_12_2017.pdf: 2284683 bytes, checksum: 58edd8d14052f9f162a3d091782c28c3 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-01-24T11:18:07Z (GMT) No. of bitstreams: 1
gomes_tt_me_ilha.pdf: 2284683 bytes, checksum: 58edd8d14052f9f162a3d091782c28c3 (MD5) / Made available in DSpace on 2018-01-24T11:18:07Z (GMT). No. of bitstreams: 1
gomes_tt_me_ilha.pdf: 2284683 bytes, checksum: 58edd8d14052f9f162a3d091782c28c3 (MD5)
Previous issue date: 2017-12-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A geração e distribuição de energia elétrica fazem parte de um vasto esquema no setor elétrico de cada país, tornando-se cada vez mais necessário criar alternativas para minimizar seu custo. Realizar a previsão de cargas elétricas de forma precisa garante uma infraestrutura mais eficiente e confiável para planejamento e operação do sistema elétrico. A proposta deste trabalho é realizar a previsão de carga elétrica global a curto prazo, utilizando uma técnica que forneça uma boa precisão, seja confiável e de baixo custo computacional. Portanto, foi utilizada a rede neural artificial ARTMAP Euclidiana, que é baseada na Teoria da Ressonância Adaptativa. Com objetivo de analisar a eficiência da metodologia proposta foram realizados 3 casos com diferentes horizontes de treinamento, sendo calculado o erro percentual médio. Os dados utilizados para as simulações são de uma companhia elétrica espanhola. O principal objetivo deste trabalho é aplicar a rede neural ARTMAP Euclidiana na previsão de cargas elétricas 24 horas à frente e para validar e verificar se esta rede é uma boa ferramenta para este tipo de estudo foi utilizada a rede neural ARTMAP Fuzzy com os mesmos dados empregados na rede ARTMAP Euclidiana como critério de comparação para comprovar a eficiência da rede neural ARTMAP Euclidiana. / Generation and distribution of electrical energy are very important for the development of the countries and it is necessary to create alternatives to minimize the costs. Electrical load forecasting must be realized precisely to assure a reliable and secure operation of the electrical system. The proposal of this work is to realize the short term global electrical load forecasting using a technique with good precision and reliable and with low computational cost. Thus, the Euclidian ARTMAP neural network was used which is also based on the adaptive resonance theory. Three different cases with different horizons were used for training and the percentual error is calculated. The data are from a Spanish company. The main objective is to apply the Euclidian ARTMAP neural network to forecast the loads 24 hours ahead. The results are compared with the traditional Fuzzy ARTMAP neural network using the same data and the comparison is effectuated evaluating the MAPE (mean absolute percentual error).
|
3 |
Análise da estabilidade estática de tensão de sistemas elétricos de potência usando uma rede neural baseada na teoria da ressonância adaptativaIsoda, Lilian Yuli [UNESP] 13 March 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-03-13Bitstream added on 2014-06-13T20:40:35Z : No. of bitstreams: 1
isoda_ly_dr_ilha.pdf: 519614 bytes, checksum: 8efa9d6eaa776e3e613a4da6439527c1 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese apresenta-se uma proposta para análise da estabilidade estática de tensão de sistemas de energia elétrica utilizando uma rede neural baseada na arquitetura ART (Adaptive Resonance Theory), designada rede neural ARTMAP Fuzzy. As redes neurais ARTdescendentes apresentam as características de estabilidade e plasticidade, as quais são propriedades imprescindíveis para a realização do treinamento e execução da análise de forma rápida e confiável. A versão ARTMAP Fuzzy é uma rede neural supervisionada, ou seja, a extração do conhecimento se processa por estímulos de entrada e de saída. O problema da análise de estabilidade de tensão é formulado considerando-se o estímulo de entrada composto pelas potências ativa e reativa nodais. O estímulo de saída é adotado como sendo a margem de segurança, a qual representa a “distância” entre o ponto de operação do sistema e a fronteira da estabilidade estática de tensão. Esta margem de segurança é calculada, via análise de sensibilidade e álgebra matricial de Kronecker, a partir da função determinante da matriz jacobiana relativa ao problema do fluxo de potência de Newton-Raphson. A operacionalidade das redes neurais é constituída por três fases principais: treinamento (ou aprendizado), análise e treinamento continuado. A fase de treinamento requer uma grande quantidade de processamento, enquanto que a fase de análise é realizada, efetivamente, sem esforço computacional. Esta é, por conseguinte, a principal justificativa para o uso das redes neurais para a resolução de problemas complexos que exigem soluções rápidas, como é o caso de aplicações em tempo real. Na fase de treinamento, o perfil de geração e de carga do sistema elétrico é gerado empregando-se uma distribuição aleatória (ou pseudo-aleatória) e a respectiva saída (margem de segurança) calculada via execução... / This work develops a methodology to effectuate static voltage stability of electrical power systems by neural network. The neural network used is based on the ART (Adaptive Resonance Theory) architecture, named ARTMAP Fuzzy neural network. The ART descendent neural networks present the characteristics of stability and plasticity, which are important properties to execute the training and the analysis fast and reliable. The ARTMAP Fuzzy version is a supervised neural network, i.e. the extraction of the knowledge is processed by input/output stimulus. The voltage stability analysis problem is formulated considering the input stimulus composed by the active and reactive nodal power. The output stimulus is adopted as the security margin, which represents the distance with the operation point and the static voltage stability frontier. The security margin is calculated by sensitivity analysis and Kronecker algebra from the determinant function of the Jacobian matrix related to the power flow problem by Newton-Raphson. Neural Network operation is constituted by three principal phase: training (or learning), analysis and continuous training. The training phase needs great processing effort, while the analysis is effectuated without computational effort. This is the principal advantage to use neural networks to solve complex problems that need fast solutions as the real time applications. On the training phase, the generation and load profile is generated using a random (or pseudo random) distribution and the respective output (security margin) is calculated by executing a conventional power-flow with adequate adaptations. The procedure proposed is independent of how is defined the generation dispatch and how the system load evolves. This is a more realistic approach, when compared to the most of the proposals found on the specialized literature that considers the load increasing linearly... (Complete abstract click electronic access below)
|
4 |
Rede ARTMAP Euclidiana utilizada na solução do problema de previsão de cargas elétricas /Gomes, Tânia Tenório January 2017 (has links)
Orientador: Anna Diva Plasencia Lotufo / Resumo: A geração e distribuição de energia elétrica fazem parte de um vasto esquema no setor elétrico de cada país, tornando-se cada vez mais necessário criar alternativas para minimizar seu custo. Realizar a previsão de cargas elétricas de forma precisa garante uma infraestrutura mais eficiente e confiável para planejamento e operação do sistema elétrico. A proposta deste trabalho é realizar a previsão de carga elétrica global a curto prazo, utilizando uma técnica que forneça uma boa precisão, seja confiável e de baixo custo computacional. Portanto, foi utilizada a rede neural artificial ARTMAP Euclidiana, que é baseada na Teoria da Ressonância Adaptativa. Com objetivo de analisar a eficiência da metodologia proposta foram realizados 3 casos com diferentes horizontes de treinamento, sendo calculado o erro percentual médio. Os dados utilizados para as simulações são de uma companhia elétrica espanhola. O principal objetivo deste trabalho é aplicar a rede neural ARTMAP Euclidiana na previsão de cargas elétricas 24 horas à frente e para validar e verificar se esta rede é uma boa ferramenta para este tipo de estudo foi utilizada a rede neural ARTMAP Fuzzy com os mesmos dados empregados na rede ARTMAP Euclidiana como critério de comparação para comprovar a eficiência da rede neural ARTMAP Euclidiana. / Abstract: Generation and distribution of electrical energy are very important for the development of the countries and it is necessary to create alternatives to minimize the costs. Electrical load forecasting must be realized precisely to assure a reliable and secure operation of the electrical system. The proposal of this work is to realize the short term global electrical load forecasting using a technique with good precision and reliable and with low computational cost. Thus, the Euclidian ARTMAP neural network was used which is also based on the adaptive resonance theory. Three different cases with different horizons were used for training and the percentual error is calculated. The data are from a Spanish company. The main objective is to apply the Euclidian ARTMAP neural network to forecast the loads 24 hours ahead. The results are compared with the traditional Fuzzy ARTMAP neural network using the same data and the comparison is effectuated evaluating the MAPE (mean absolute percentual error). / Mestre
|
5 |
Similaridade comportamental do consumo residencial de eletricidade por rede neural baseada na Teoria da Ressonância Adaptativa /Justo, Daniela Sbizera January 2016 (has links)
Orientador: Carlos Roberto Minussi / Resumo: Esta pesquisa será dedicada ao desenvolvimento de uma metodologia com vistas à compreensão e ao exame do comportamento do hábito de consumo de eletricidade residencial, via análise de similaridade, baseado no uso de uma rede neural da família ART (Adaptive Resonance Theory). Trata-se de uma rede neural composta por dois módulos ART-Fuzzy, cujo treinamento é realizado de modo não supervisionado. No primeiro módulo, serão usadas, como entrada, as informações que caracterizam os hábitos de consumo e a situação socioeconômica. A saída do primeiro módulo junto com os dados referentes aos equipamentos eletroeletrônicos da residência compõem a entrada do segundo módulo que, finalmente, produz informações, na saída, relativas ao diagnóstico pretendido, ou seja, a formação de agrupamentos similares (clusters). Todo o processamento da rede neural modular é realizado com dados binários, os quais são gerados a partir de informações quantitativas e qualitativas. As redes neurais da família ART são estáveis e plásticas. A estabilidade refere-se à garantia de sempre produzir soluções, ou seja, não se observa problemas relativos à má convergência. A plasticidade é uma característica que possibilita a execução do treinamento de forma contínua sem destruir o conhecimento adquirido previamente. É um recurso pouco observado nas demais redes neurais disponíveis na literatura especializada. Com essas propriedades (estabilidade e plasticidade), combinada com o processamento de dados essencialmente ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
|
6 |
Similaridade comportamental do consumo residencial de eletricidade por rede neural baseada na Teoria da Ressonância Adaptativa / Behavioral similarity of residential electricity customers using a neural network based on Adaptive Resonance TheoryJusto, Daniela Sbizera [UNESP] 25 August 2016 (has links)
Submitted by Daniela Sbizera Justo null (sbizera@yahoo.com) on 2016-09-20T14:14:51Z
No. of bitstreams: 1
Tese-Daniela Sbizera Justo.pdf: 5782774 bytes, checksum: 483d11758263a9d6c3a3d4c89fe66919 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-09-22T19:44:56Z (GMT) No. of bitstreams: 1
justo_ds_dr_ilha.pdf: 5782774 bytes, checksum: 483d11758263a9d6c3a3d4c89fe66919 (MD5) / Made available in DSpace on 2016-09-22T19:44:56Z (GMT). No. of bitstreams: 1
justo_ds_dr_ilha.pdf: 5782774 bytes, checksum: 483d11758263a9d6c3a3d4c89fe66919 (MD5)
Previous issue date: 2016-08-25 / Esta pesquisa será dedicada ao desenvolvimento de uma metodologia com vistas à compreensão e ao exame do comportamento do hábito de consumo de eletricidade residencial, via análise de similaridade, baseado no uso de uma rede neural da família ART (Adaptive Resonance Theory). Trata-se de uma rede neural composta por dois módulos ART-Fuzzy, cujo treinamento é realizado de modo não supervisionado. No primeiro módulo, serão usadas, como entrada, as informações que caracterizam os hábitos de consumo e a situação socioeconômica. A saída do primeiro módulo junto com os dados referentes aos equipamentos eletroeletrônicos da residência compõem a entrada do segundo módulo que, finalmente, produz informações, na saída, relativas ao diagnóstico pretendido, ou seja, a formação de agrupamentos similares (clusters). Todo o processamento da rede neural modular é realizado com dados binários, os quais são gerados a partir de informações quantitativas e qualitativas. As redes neurais da família ART são estáveis e plásticas. A estabilidade refere-se à garantia de sempre produzir soluções, ou seja, não se observa problemas relativos à má convergência. A plasticidade é uma característica que possibilita a execução do treinamento de forma contínua sem destruir o conhecimento adquirido previamente. É um recurso pouco observado nas demais redes neurais disponíveis na literatura especializada. Com essas propriedades (estabilidade e plasticidade), combinada com o processamento de dados essencialmente binários, confere ao sistema neural uma ampla capacidade de produzir objetivos que podem ser facilmente modificados visando atender requisitos preestabelecidos pelos usuários (consumidor, empresa do setor elétrico). Neste sentido, o resultado esperado é a obtenção de informações referentes à similaridade de consumidores, à qual pode-se vislumbrar alguns benefícios, por parte dos consumidores, como melhorar o hábito de consumir energia elétrica, oferecendo também, por meio do conhecimento dos consumidores similares, a obtenção de melhores estratégias de negociação com os fornecedores, principalmente, no caso de sistemas smart grids. Neste novo paradigma do setor elétrico, há uma forte tendência do(s) consumidor(es) escolher(em) livremente a empresas fornecedoras de energia elétrica. Além disso, é discutida uma melhor forma para a realização da previsão de carga em pontos da rede elétrica onde há uma maior incerteza, e.g., nos barramentos mais próximos do consumidor (transformadores etc.), i.e., as incertezas no contexto da previsão de carga total do sistema são aumentadas à medida que se adentra a partir da carga global até chegar ao consumidor final, em especial ao usuário residencial. A base de dados, para a fase de treinamento da rede neural, é construída a partir de informações disponibilizadas por consumidores voluntários via o preenchimento de formulário. Realizada a fase de treinamento, a rede neural adquire um conhecimento incipiente afeito de ser aperfeiçoado ao longo do tempo, quando se implementa o recurso da plasticidade. / This work develops a methodology to understand and analyze the behavior of residential electricity consumption by similarity analysis, based on a neural network of ART (Adaptive Resonance Theory) family. The neural network is composed of two Fuzzy-ART modules whose training are non-supervised. At the first module, the inputs are information that characterize the consumption habits and the socio-economic situation. The output of the first module with the data referred to electro-electronic equipment available at the residence compose the input of the second module, which finally produces information at the output related to the diagnosis proposed, i.e. the formation of clusters. All the neural network processing is realized with binary data, which are generated from quantitative and qualitative information. ART family neural networks are stable and plastic. The stability assures that it always produces a solution, i.e. there is no convergence problem. The plasticity is a characteristic that allows executing the processing continuously without losing the knowledge previously learned. Those advantages are seldom observed in other neural networks available at the specialized literature. Considering these properties (stability and plasticity), combined with the data processing exclusively binary, the neural network is capable to be modified when necessary to attend pre-defined requests by the users (consumers, distributers, etc.). Therefore, the expected result is to obtain information referred to the similarity with consumers, and with this information, the consumers can improve their habits or even negotiating with the producers in case of smart grid systems. This new electrical system paradigm, the tendency is that the consumers can arbitrarily choose the electrical distributers. Furthermore, the work discusses the best way to realize load forecasting in points where there is uncertainty, e.g., on the busses near the consumers (transformers), i.e., the uncertainties considering the global forecasting increase if the information of residences is not considered. The database for the training phase of the neural network was built by a quiz form filled by some volunteer consumers. Afterwards, when finishing the training phase, the neural network acquires knowledge that along time can implement the plasticity resource.
|
Page generated in 0.0997 seconds