Spelling suggestions: "subject:"deoria dde martingalas"" "subject:"deoria dde martingales""
1 |
Some contributions to population genetics via Fleming-Viot processes / Contribuições à genética populacional via processos de Fleming-ViotTelles Timóteo da Silva 14 July 2006 (has links)
O processo de Fleming-Viot é um processo de Markov cujo espaço de estado é um conjunto de medidas de propabilidade. As funções-amostras do processo representam as prováveis possibilidades de transformação das freqüencias de tipos genéticos presentes numa população ao longo do tempo. Obtido como solução de um problema de martingala bem posto para um operador linear construído de forma a modelar diversas características importantes no estudo da genética populacional, como mutação, seleção, deriva genética, entre outras, o processo de Fleming-Viot permite, por meio de uma abordagem matemática unificadora, tratar problemas de complexidade variada. No presente trabalho, estudamos s processs de Fleming-Viot com saltos, introduzidos por Hiraba. Interpretamos biologicamente esse saltos como mudanças abruptas que podem ocorrer, num curto espaço de tempo, durante a evolução de uma população de indivíduos, causadas por epidemias, desastres naturais ou outras catástrofes, e que levam a descontinuidades nas frequências dos tipos gênicos. Apresentamos uma forma de incluir um fator de seleção no processo com saltos, através da aplicação de uma transformação de medida do tipo Girsanov. Em seguida, fazemos uma análise do comportamento assintótico do processo utilizando técnicas de dualidade e acoplamento.
|
2 |
Contribuições à genética populacional via processos de Fleming-Viot / Some contributions to population genetics via Fleming-Viot processesSilva, Telles Timóteo da 14 July 2006 (has links)
Made available in DSpace on 2015-03-04T18:50:48Z (GMT). No. of bitstreams: 1
Apresentacao.pdf: 199708 bytes, checksum: ce3c2b5e9db17dddd7a2684d9e5cac8b (MD5)
Previous issue date: 2006-07-14 / O processo de Fleming-Viot é um processo de Markov cujo espaço de estado é um conjunto de medidas de propabilidade. As funções-amostras do processo representam as prováveis possibilidades de transformação das freqüencias de tipos genéticos presentes numa população ao longo do tempo. Obtido como solução de um problema de martingala bem posto para um operador linear construído de forma a modelar diversas características importantes no estudo da genética populacional, como mutação, seleção, deriva genética, entre outras, o processo de Fleming-Viot permite, por meio de uma abordagem matemática unificadora, tratar problemas de complexidade variada. No presente trabalho, estudamos s processs de Fleming-Viot com saltos, introduzidos por Hiraba. Interpretamos biologicamente esse saltos como mudanças abruptas que podem ocorrer, num curto espaço de tempo, durante a evolução de uma população de indivíduos, causadas por epidemias, desastres naturais ou outras catástrofes, e que levam a descontinuidades nas frequências dos tipos gênicos. Apresentamos uma forma de incluir um fator de seleção no processo com saltos, através da aplicação de uma transformação de medida do tipo Girsanov. Em seguida, fazemos uma análise do comportamento assintótico do processo utilizando técnicas de dualidade e acoplamento.
|
Page generated in 0.11 seconds