Spelling suggestions: "subject:"termodinâmica dde cases confirmados"" "subject:"termodinâmica dde cases confeccionados""
1 |
Modelagem multiescala de reservatórios não convencionais de gás contendo redes de fraturas naturais e hidráulicasRocha, Aline Cristina da 20 March 2017 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2017-08-10T14:46:54Z
No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-10T14:47:10Z (GMT) No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Made available in DSpace on 2017-08-10T14:47:21Z (GMT). No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5)
Previous issue date: 2017-03-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this work we construct a new multiscale computational model to describe the flow of gases in unconventional reservoirs (shale gas) containing distinct levels of fractures (natural and hydraulic). Such reservoirs exhibit peculiar characteristics that make an accurate description of the physical phenomenon involved a hard task. Among the characteristics we can highlight the low permeability (order of nanodarcys) and the multiple levels of porosity related to the multiple scales involved. In the present work the multiscale modeling of the gas flow is built with the formal homogenization procedure. The geological formation is characterized by four distinct length scales. The finest one, the nanoscopic, is related to the nanopores in the organic matter (kerogen) where gas is adsorbed. In order to accurately describe the gas adsorption in kerogen we pursue in the context of the Thermodynamics of Inhomogeneous Fluids. More precisely, the isotherms that describe the gas adsorption in nanopores are built based on the Density Functional Theory (DFT). The upscaling to the microscale is reached through the homogenization procedure. The window of observation related to this scale is composed of kerogen aggregates and inorganic matter (clay, quartz, calcite). Such phases are separated by the network of interparticle pores exibting characteristic length between 10^{-4} and 10^{-9} meters. The micropores are partially-saturated, filled with a free gas phase in thermodynamic equilibrium with the dissolved gas in the aqueous phase. The model considers immobile water phase with the equation of fickian diffusion of the dissolved gas coupled to the Darcyan flow of the free gas. At the mesoscale the shale matrix (where interparticle pores, kerogen aggregates and inorganic matter are envisioned as an homogenized media) is intertwined by the network of natural fractures exhibiting preferred paths for the flow of gas. The upscaling of this coupled system of partial differential equations gives rise to a macroscopic model of double porosity in the sense of Arbogast and coworkers (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Within this context the shale matrix behaves as a microstructural distributed mass source term in the mass balance equation that describes the gas movement in the homogenized network of natural fractures. Finally we establish the coupling between the hydrodynamics in the networks of natural and hydraulic fractures, where single phase gas flow takes place. Such coupling is accomplished by reduced dimension techniques where induced fractures are treated as (n-1), n = 2,3 lower dimensional geological objects. The resulting model is composed of three partial differential nonlinear equations governing the gas hydrodynamics in the shale matrix and networks of natural and hydraulic fractures. In order to decouple the system we proceed within the context proposed by Arbogast (ARBOGAST,1997) which adopts a variable decomposition leading to the numerical solution of independent subsystems. This strategy allows the solution of the system mentioned above to be made in a sequential form avoiding additional iterations between the subsystems. The resultant governing equations are discretized by the finite element method with the introduction of submeshes to threat the gas transport in shale matrix and compute the source term in the pressure equation of the natural fractures network. The discretized model is used to simulate gas production as well as transient well tests. Promising numerical results are obtained which can be used to improve the description of the involved phenomena giving rise to new diagnostic curves to the characterization of unconventional reservoirs. / Neste trabalho propomos um novo modelo computacional multiescala para descrever o transporte de gases em reservatórios não convencionais (shale gas) com distintos níveis de fraturas (naturais e hidráulicas). Tais reservatórios apresentam características bastante peculiares que tornam a descrição acurada dos fenômenos físicos envolvidos uma tarefa árdua. Dentre estas características podemos ressaltar a baixíssima permeabilidade (da ordem de nanodarcys) e os múltiplos níveis de porosidade associados às múltiplas escalas envolvidas. No presente trabalho a modelagem multiescala do transporte do gás metano é construída fazendo uso do processo formal de homogeneização. O modelo considera o reservatório descrito por quatro escalas espaciais distintas. A escala mais fina, nanoscópica, é associada aos nanoporos na matéria orgânica (querogênio) onde o gás encontra-se adsorvido. Para descrever precisamente a adsorção do gás no querogênio fazemos uso da Termodinâmica de Gases Confinados. Mais precisamente, as isotermas de adsorção do gás nos nanoporos são construídas fazendo uso da Density Functional Theory (DFT). Através do processo de homogeneização é realizado o upscaling para a escala intermediária (microscópica). A janela observacional associada a esta escala consiste dos agregados de querogênio juntamente com a matéria inorgânica (considerada impermeável) e rede de microporos que podem exibir tamanhos entre 10^{-4} a 10^{-9} metros. Consideramos estes, por sua vez, parcialmente saturados preenchidos por uma fase gás livre em equilíbrio termodinâmico local com o gás dissolvido na fase aquosa. O modelo considera a água estagnada com a equação de difusão fickiana do gás dissolvido acoplada ao escoamento do gás livre. Na mesoescala a matriz do folhelho (na qual microporos, agregados de querogênio e matéria inorgânica são tratados como um meio contínuo homogeneizado) é permeada por uma rede de fraturas naturais que exibem caminhos preferenciais para o movimento do gás. O processo do upscaling deste sistema acoplado de equações diferenciais parciais dá origem a um modelo macroscópico de porosidade dupla no sentido de Arbogast e colaboradores (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Neste contexto, a matriz atua como uma fonte de massa distribuída microestruturalmente no balanço de massa que descreve o movimento do gás na rede de fraturas naturais. Finalmente estabelecemos o acoplamento entre as hidrodinâmicas nas redes de fraturas naturais e hidráulicas, onde ocorre o escoamento monofásico do gás livre. Tal acoplamento é realizado via técnica de redução de dimensão onde as fraturas hidráulicas são tratadas como objetos geológicos de dimensão reduzida (n-1), n=2,3. O modelo resultante é composto por três equações diferenciais parciais não lineares acopladas que governam a hidrodinâmica do gás na matriz e redes de fraturas naturais e hidráulicas. Com o intuito de desacoplar o sistema procedemos no contexto proposto por Arbogast (ARBOGAST,1997) que consiste em utilizar uma decomposição das variáveis resultando em subsistemas independentes a serem resolvidos numericamente. Esta escolha permite que o sistema supracitado seja resolvido de forma sequencial evitando a necessidade de iterações adicionais entre os subsistemas. Na discretização espacial adotamos o método de elementos finitos com a introdução de submalhas para tratar o transporte do gás na matriz e assim efetuar de forma precisa o cálculo do termo de fonte na equação da pressão do gás na rede de fraturas naturais. O modelo discreto é utilizado para o cômputo da produção de gás bem como para simular testes transientes de pressão em poços. Resultados numéricos promissores são obtidos os quais podem ser empregados para aprimorar a descrição dos fenômenos envolvidos e dar origem a novas curvas de diagnóstico para caracterização de propriedades de reservatórios não convencionais.
|
Page generated in 0.0809 seconds