• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase diagram, thermal stability, and high temperature oxidation of the ternary Cu-Ni-Fe system

Gallino, Isabella 25 November 2003 (has links)
Due to the aluminum industry demands, a large effort has recently been devoted to the development of special alloys to be used as inert anodes for a newly designed aluminum reduction cell. The implementation of this new technology aims at the replacement of the graphite anodes that have been used for over 100 years in aluminum smelting, which would reduce fossil carbon consumption, and eliminate the emission of carbon dioxide and of perfluorocarbons. Ternary alloys containing copper, nickel, and iron have been the subject of the research activities. The present research focused on the stability of the Cu-Ni-Fe alloys at high temperatures in oxidizing and fluoridating environments. The experimental methods included thermodynamic calculations of the phase diagram ('Thermocalc'), optical microscopy and microprobe microstructural and chemical investigations (EMIPA-WDS), small-angle neutron scattering (SANS), differential thermal analysis (DTA), and air-oxidation studies. The results have led to the optimization of the Cu-Ni-Fe ternary phase diagram and to an extensive study of the thermodynamics and kinetics of the spinodal decomposition and discontinuous reactions occurring during ageing as a function of alloy composition. The oxidizing reactions occurring in air at high temperatures at the surface of the alloys have been also discussed in terms of thermodynamic and kinetic laws. The phase formation in a fluorine containing environment as encountered in an aluminum electrolytic cell is predicted using principles of physical chemistry. / Graduation date: 2004 / Best scan available. Figures in original document are very dark and have a moray pattern.
2

Metallurgy and superconductivity of niobium-titanium-tantalum ternary alloy systems

Li, Na 13 April 2001 (has links)
The metallurgy and superconductivity of the Nb-Ti-Ta ternary alloy system were studied. The Nb-Ti, and Ta-Ti binary samples, and Nb-Ti-Ta ternary samples were precipitation heat treated under different schedules. After the precipitating heat treatment, the samples were characterized by X-Ray Diffraction (XRD) techniques. Equilibrium binary and ternary phase diagrams based on the different alloy compositions and heat treatment temperatures were developed. The Ta-Ti binary phase diagram is very close to the ASM standard phase diagram. The ��-phase boundary of Nb-Ti binary phase diagram developed here is at a higher temperature relative to the ASM standard one. A working ternary equilibrium phase diagram for the Nb-Ti-Ta system has been developed that is based on the experimental measurements and quantitative thermodynamic calculations. Measurements of superconducting critical temperature, Tc, show a good agreement with previous measurements of Tc in the ternary alloys. / Graduation date: 2002

Page generated in 0.0489 seconds