Spelling suggestions: "subject:"tersoff potential"" "subject:"tersoff2 potential""
1 |
Computational and experimental studies of graphene and carbon nanotubesShai, Moshibudi January 2016 (has links)
Thesis (M. Sc. (Physics)) -- University of Limpopo, 2016. / Bilayer graphene and single-walled carbon nanotubes were studied through classical molecular dynamics using Tersoff potential. The Tersoff potential has been the most successful model to replicate much of the semiconducting properties in carbon structures. The simulations were performed within a canonical (NVT) ensemble for structural properties and isothermal–isobaric ensemble (NPT) for thermodynamic properties of both materials. The bilayer graphene consists of two models of 64 and 256 atoms. Single-walled carbon nanotubes consist of three chiral structures of 264 atoms which is cnt(12,10), 260 atoms which is cnt(10,12) and armchair structure of 312 atoms which is cnt(12,12). The structural and thermodynamics properties were investigated in a range of temperature from 300 - 5000 K. It has been found that some of the properties of the graphene and carbon nanotube are similar. Graphene256 was found to be more stable than graphene64 and the armchair cnt(12,12) appears to be more mechanically stable than chiral cnt(12,10). Graphene and single-walled carbon nanotubes were also studied using X-ray diffraction and atomic force microscopy (AFM). The lattice constant for both materials were calculated and they agree well with the computational results. For carbon nanotubes, different solvents were used for characterization using the AFM. Chloroform was the best solvent since we managed to find some bundles of carbon nanotube. For ethanol and toluene solvents we did not managed to get any bundles. The diameter of single-walled carbon nanotube was determined only on a solution that chloroform solvent was used.
|
2 |
Mechanical behaviors and Electronic Properties of Boron Nitride Nanotubes under the Axial Strain.Lien, Ting-Wei 06 September 2010 (has links)
In this study, we used the Density functional theory (DFT) to obtain the relationship between mechanical property and electronic property of Boron nitride nanotubes (BNNTs) under the uni-axial strain. Moreover, we also investigated one CO molecule adsorbed on the BNNTs under the uni-axial strain. We also use the molecular dynamics to introduce the mechanical property and dynamic behavior of (8,8)BNNT under the uni-axial strain. There were three parts in this study:
The first part:
The effect of uni-axial strain on the electronic properties of (5,5) and (8,0)boron nitride nanotubes were obtained by DFT calculation. We used the HOMO-LUMO Gap¡Bbond angle¡Bbond length and radial buckling to analyze the electronic properties and mechanical properties. The stress-strain profiles indicated that different BNNTs types displayed very similar mechanical properties, but there were variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. In addition, the variations in nanotube geometries, partial density of states (PDOS) and charges of boron and nitride atoms were also discussed for (8,0) and (5,5) BNNTs at different strains.
The second part:
The DFT was used to investigate electronic properties of CO molecule adsorbed on BNNT under the uni-axial strain. The stress-strain profiles indicated that the CO molecule adsorption on BNNT leaded only to a local mechanical deformation. The strength of BNNT could not be affected when the CO molecule adsorbed on that. Moreover, we obtained that the charge of CO will slightly transfer to the adsorbed atom of BNNT when strain increased. Hence, the adsorption energy increased slightly under the uni-axial strain.
The third part:
The molecular dynamics simulations were performed to investigate deformation behaviors of (8,8)BN nanotubes under axial tensile strains at 300k. Variations with the tensile strain in the axial stress, bond lengths, bond angles, radial buckling, and slip vectors were all examined. The axial, radial, and tangential components of the slip vector were also employed to monitor, respectively, the local elongation, necking, and twisting deformation near the failure of the nanotube. The components of the slip vector grew rapidly and abruptly after the failure strain, especially for the axial component. This implies that the local elongation dominates the failure of the loaded BN nanotube and finally results in a chain-like tensile failure mode.
|
Page generated in 0.0842 seconds