Spelling suggestions: "subject:"test predictor contribution"" "subject:"test predictor kontribution""
1 |
Sufficient Dimension Reduction in Complex DatasetsYang, Chaozheng January 2016 (has links)
This dissertation focuses on two problems in dimension reduction. One is using permutation approach to test predictor contribution. The permutation approach applies to marginal coordinate tests based on dimension reduction methods such as SIR, SAVE and DR. This approach no longer requires calculation of the method-specific weights to determine the asymptotic null distribution. The other one is through combining clustering method with robust regression (least absolute deviation) to estimate dimension reduction subspace. Compared with ordinary least squares, the proposed method is more robust to outliers; also, this method replaces the global linearity assumption with the more flexible local linearity assumption through k-means clustering. / Statistics
|
Page generated in 0.0761 seconds