• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Importance of Red River in the History of the Southwest

Rains, Cleo 08 1900 (has links)
For four hundred years the Red River Valley has been the battleground between contending Indian tribes and European races, and for almost three hundred of these years the river has been a disputed boundary line, either between rival nations, or between neighboring states of our country. The river has never been of much importance as a commercial route, yet very few rivers in all the United States have played so an important and persistent a part in this history of their sections as the Red River has played in the history of the Southwest.
2

The Effects of Land Use and Human Activities on Carbon Cycling in Texas Rivers

Zeng, Fan-Wei January 2011 (has links)
I investigated how land use and human activities affect the sources and cycling of carbon (C) in subtropical rivers. Annually rivers receive a large amount of terrestrial C, process a portion of this C and return it to the atmosphere as CO2. The rest is transported to the ocean. Land use and human activities can affect the sources and fate of terrestrial C in rivers. However, studies on these effects are limited, especially in the humid subtropics. I combined measurements of the partial pressure of dissolved CO2 (pCO2), C isotopes (13C and 14C) and solid-state 13C nuclear magnetic resonance (NMR) to study C cycling in three subtropical rivers in Texas, two small rivers (Buffalo Bayou and Spring Creek) and a midsized river (the Brazos). My pCO2 data show that small humid subtropical rivers are likely a large source of atmospheric CO2 in the global C cycle. My measurements on pCO2, C isotopic and chemical composition of dissolved inorganic C (DIC) and particulate organic C (POC) revealed four types of effects of land use and human activities on river C cycling. First, oyster shells and crushed carbonate minerals used in road construction are being dissolved and slowly drained into Buffalo Bayou and the lower Brazos and may be a source of river CO2 released to the atmosphere. Second, river damming and nutrient input from urban treated wastewater stimulate algal growth and reduce CO2 evasion of the middle Brazos. Third, urban treated wastewater discharge is adding old POC to the middle Brazos and decomposition of the old POC adds to the old riverine DIC pool. Fourth, agricultural activities coupled with high precipitation enhance loss of old organic C (OC) from deep soils to the lower Brazos, and decomposition of the old soil OC contributes to the old CO2 evaded. I document for the first time the river C cycling effects of the use of carbonate minerals in construction and the riverine discharge of urban wastewater. Results presented here indicate the need to study disturbed river systems to better constrain the global C budget.

Page generated in 0.0697 seconds