• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

”Du är så mogen för din ålder…” : Identifiering av grooming med hjälp av en AI-språkmodell.

O'Neill, Monia, Chroscielewski, Jasmin January 2024 (has links)
Genom litteratursökning och manuell datakompilering av sexualbrott mot barn, besvaras frågan “Vilka ord och fraser som förbrytare använder i konversationer är vanligt förekommande och kan användas som identifierande markörer av grooming?” och resulterade i en ordlista av könsord, sexuellt nedvärderande skällsord, och interjektioner som utrop, uppmaningar, och svordomar, som förekommer i högre utsträckning än i vardagliga konversationer. Denna lista användes för träning och test av en språkmodell som flaggar för skadlig data som kan indikera på grooming. Med en semistrukturerad intervju, kompletterat med litteratursökningen av sexualbrottmål besvarades frågan “Vilka sociala plattformar används av förbrytare för att kontakta barn med syfte att utsätta dem för sexualbrott, och varför är dessa plattformar mer använda än andra?”. Dessa metoder påvisade att Snapchat hade en överväldigande majoritet och var den mest använda plattformen, följt av Instagram på en andraplats, samt Tiktok och Kik på en gemensam tredjeplats. För att besvara den tredje frågeställningen “Kan identifiering av grooming underlättas genom Djupinlärning och Naturlig språkbehandling?" utfördes ett flertal experiment på den skapade detekteringsmodell med Naïve Bayes algoritmen som gav positiva utslag. Motiveringen till användandet av AI var att underlätta för IT-forensiker och utredare i deras arbete genom att snabbt identifiera förekomsten av grooming. Eftersom mängden data som extraheras är väldigt omfattande och innehållsklassificering har stor potential för automatisering, kan AI-modeller avsevärt minska arbetsbördan och öka effektiviteten. / By investigating and analyzing court cases, the question of which are the most commonly used words and phrases during grooming attempts that could be used as grooming indicators. A list was compiled and utilized as “harmful” and “harmless” for a training- and test dataset for an AI-model. The list contained snippets of conversations where genital, sexually derogatory terms, commands, and swear words averaged higher than in daily conversation. Through the methods of a semistructured interview and analyzing court cases, results of which social platforms perpetrators use to contact children could be compiled. This showed that Snapchat was by far the most prevalent platform used, followed by Instagram and in third place Tiktok and Kik Messaging. To answer this question, “harmless” data from the same platforms were used in the experiments. The third and final question, pertaining to the possibility of using an AI in grooming detection, was answered through multiple experiments. In an effort to determine if the conversations contained grooming or not, similar in fashion to e-mail spam classification problems, a script with Naïve Bayes as the classifier produced positive results. The goal of this study was to compile a list of words and phrases that, once used to train the model, could detect usage of these words and phrases. And notify the user if the current conversation has been flagged for suspected grooming attempts.
2

Semi-supervised adverse drug reaction detection / Halvvägledd upptäckt av läkemedelsreleterade biverkningar

Ohl, Louis January 2021 (has links)
Pharmacogivilance consists in carefully monitoring drugs in order to re-evaluate their risk for people’s health. The sooner the Adverse Drug Reactions are detected, the sooner one can act consequently. This thesis aims at discovering such reactions in electronical health records under the constraint of lacking annotated data, in order to replicate the scenario of the Regional Center for Pharmacovigilance of Nice. We investigate how in a semi-supervised learning design the unlabeled data can contribute to improve classification scores. Results suggest an excellent recall in discovering adverse reactions and possible classification improvements under specific data distribution. / Läkemedelsövervakningen består i kolla försiktigt läkemedlen så att utvärdera dem för samhällets hälsa. Ju tidigare de läkemedelsrelaterade biverkningarna upptäcks, desto tidigare man får handla dem. Detta exjobb söker att upptäcka de där läkemedelsrelaterade biverkningarnna inom elektroniska hälsopost med få datamärkningar, för att återskapa Nice regionalt läkemedelelsöveraknings-centrumets situationen. Vi undersöker hur en halvväglett lärande lösning kan hjälpa att förbättra klassificeringsresultat. Resultaten visar en god återställning med biverknings-upptäckning och möjliga förbättringar.

Page generated in 0.1007 seconds