Spelling suggestions: "subject:"exture descriptors"" "subject:"exture escriptors""
1 |
Descritores locais de textura para classificação de imagens coloridas sob variação de iluminação / Local texture descriptors for color texture classification under varying illuminationTamiris Trevisan Negri 15 December 2017 (has links)
A classificação de texturas coloridas sob diferentes condições de iluminação é um desafio na área de visão computacional, e depende da eficiência dos descritores de textura em capturar características que sejam discriminantes independentemente das propriedades da fonte de luz incidente sobre o objeto. Visando melhorar o processo de classificação de texturas coloridas iluminadas com diferentes fontes de luz, este trabalho propõe três novos descritores, nomeados Opponent Color Local Mapped Pattern (OCLMP), que combina o descritor de texturas por padrões locais mapeados (Local Mapped Pattern - LMP) com a teoria de cores oponentes; Color Intensity Local Mapped Pattern (CILMP), que extrai as informações de cor e textura de maneira integrada, levando em consideração a textura da cor, combinando estas informações com características da luminância da textura em uma análise multiresolução; e Extended Color Local Mapped Pattern (ECLMP), que utiliza dois operadores para extrair informações de cor e textura de forma integrada (textura da cor) combinadas com informações apenas de textura (sem cor) de uma imagem. Todos esses novos descritores propostos são paramétricos e, sendo o ajuste ótimo de seus parâmetros não trivial, o processo exige um tempo excessivo de computação. Portanto, foi proposto nesta tese a utilização de algoritmos genéticos para o ajuste automático dos parâmetros. A avaliação dos descritores propostos foi realizada em duas bases de dados de texturas coloridas com variação de iluminação: RawFooT (Raw Food Texture Database) e KTH-TIPS- 2b (Textures under varying Illumination, Pose and Scale Database), utilizando-se um classificador. Os resultados experimentais mostraram que os descritores propostos são mais robustos à variação de iluminação do que outros decritores de textura comumente utilizados na literatura. Os descritores propostos apresentaram um desempenho superior aos descritores comparados em 15% na base de dados RawFooT e 4% na base de dados KTH-TIPS-2b. / Color texture classification under varying illumination remains a challenge in the computer vision field, and it greatly relies on the efficiency at which the texture descriptors capture discriminant features, independent of the illumination condition. The aim of this thesis is to improve the classification of color texture acquired with varying illumination sources. We propose three new color texture descriptors, namely: the Opponent Color Local Mapped Pattern (OCLMP), which combines a local methodology (LMP) with the opponent colors theory, the Color Intensity Local Mapped Pattern (CILMP), which extracts color and texture information jointly, in a multi-resolution fashion, and the Extended Color Local Mapped Pattern (ECLMP), which applies two operators to extract color and texture information jointly as well. As the proposed methods are based on the LMP algorithm, they are parametric functions. Finding the optimal set of parameters for the descriptor can be a cumbersome task. Therefore, this work proposes the use of genetic algorithms to automatically adjust the parameters. The methods were assessed using two data sets of textures acquired using varying illumination sources: the RawFooT (Raw Food Texture Database), and the KTH-TIPS-2b (Textures under varying Illumination, Pose and Scale Database). The experimental results show that the proposed descriptors are more robust to variations to the illumination source than other methods found in the literature. The improvement on the accuracy was higher than 15% on the RawFoot data set, and higher than 4% on the KTH-TIPS-2b data set.
|
2 |
Descritores locais de textura para classificação de imagens coloridas sob variação de iluminação / Local texture descriptors for color texture classification under varying illuminationNegri, Tamiris Trevisan 15 December 2017 (has links)
A classificação de texturas coloridas sob diferentes condições de iluminação é um desafio na área de visão computacional, e depende da eficiência dos descritores de textura em capturar características que sejam discriminantes independentemente das propriedades da fonte de luz incidente sobre o objeto. Visando melhorar o processo de classificação de texturas coloridas iluminadas com diferentes fontes de luz, este trabalho propõe três novos descritores, nomeados Opponent Color Local Mapped Pattern (OCLMP), que combina o descritor de texturas por padrões locais mapeados (Local Mapped Pattern - LMP) com a teoria de cores oponentes; Color Intensity Local Mapped Pattern (CILMP), que extrai as informações de cor e textura de maneira integrada, levando em consideração a textura da cor, combinando estas informações com características da luminância da textura em uma análise multiresolução; e Extended Color Local Mapped Pattern (ECLMP), que utiliza dois operadores para extrair informações de cor e textura de forma integrada (textura da cor) combinadas com informações apenas de textura (sem cor) de uma imagem. Todos esses novos descritores propostos são paramétricos e, sendo o ajuste ótimo de seus parâmetros não trivial, o processo exige um tempo excessivo de computação. Portanto, foi proposto nesta tese a utilização de algoritmos genéticos para o ajuste automático dos parâmetros. A avaliação dos descritores propostos foi realizada em duas bases de dados de texturas coloridas com variação de iluminação: RawFooT (Raw Food Texture Database) e KTH-TIPS- 2b (Textures under varying Illumination, Pose and Scale Database), utilizando-se um classificador. Os resultados experimentais mostraram que os descritores propostos são mais robustos à variação de iluminação do que outros decritores de textura comumente utilizados na literatura. Os descritores propostos apresentaram um desempenho superior aos descritores comparados em 15% na base de dados RawFooT e 4% na base de dados KTH-TIPS-2b. / Color texture classification under varying illumination remains a challenge in the computer vision field, and it greatly relies on the efficiency at which the texture descriptors capture discriminant features, independent of the illumination condition. The aim of this thesis is to improve the classification of color texture acquired with varying illumination sources. We propose three new color texture descriptors, namely: the Opponent Color Local Mapped Pattern (OCLMP), which combines a local methodology (LMP) with the opponent colors theory, the Color Intensity Local Mapped Pattern (CILMP), which extracts color and texture information jointly, in a multi-resolution fashion, and the Extended Color Local Mapped Pattern (ECLMP), which applies two operators to extract color and texture information jointly as well. As the proposed methods are based on the LMP algorithm, they are parametric functions. Finding the optimal set of parameters for the descriptor can be a cumbersome task. Therefore, this work proposes the use of genetic algorithms to automatically adjust the parameters. The methods were assessed using two data sets of textures acquired using varying illumination sources: the RawFooT (Raw Food Texture Database), and the KTH-TIPS-2b (Textures under varying Illumination, Pose and Scale Database). The experimental results show that the proposed descriptors are more robust to variations to the illumination source than other methods found in the literature. The improvement on the accuracy was higher than 15% on the RawFoot data set, and higher than 4% on the KTH-TIPS-2b data set.
|
3 |
Automatic Virus Identification using TEM : Image Segmentation and Texture Analysis / Automatisk identifiering av virus med hjälp av transmissionselektronmikroskopi : bildsegmentering och texturanalysKylberg, Gustaf January 2014 (has links)
Viruses and their morphology have been detected and studied with electron microscopy (EM) since the end of the 1930s. The technique has been vital for the discovery of new viruses and in establishing the virus taxonomy. Today, electron microscopy is an important technique in clinical diagnostics. It both serves as a routine diagnostic technique as well as an essential tool for detecting infectious agents in new and unusual disease outbreaks. The technique does not depend on virus specific targets and can therefore detect any virus present in the sample. New or reemerging viruses can be detected in EM images while being unrecognizable by molecular methods. One problem with diagnostic EM is its high dependency on experts performing the analysis. Another problematic circumstance is that the EM facilities capable of handling the most dangerous pathogens are few, and decreasing in number. This thesis addresses these shortcomings with diagnostic EM by proposing image analysis methods mimicking the actions of an expert operating the microscope. The methods cover strategies for automatic image acquisition, segmentation of possible virus particles, as well as methods for extracting characteristic properties from the particles enabling virus identification. One discriminative property of viruses is their surface morphology or texture in the EM images. Describing texture in digital images is an important part of this thesis. Viruses show up in an arbitrary orientation in the TEM images, making rotation invariant texture description important. Rotation invariance and noise robustness are evaluated for several texture descriptors in the thesis. Three new texture datasets are introduced to facilitate these evaluations. Invariant features and generalization performance in texture recognition are also addressed in a more general context. The work presented in this thesis has been part of the project Panvirshield, aiming for an automatic diagnostic system for viral pathogens using EM. The work is also part of the miniTEM project where a new desktop low-voltage electron microscope is developed with the aspiration to become an easy to use system reaching high levels of automation for clinical tissue sections, viruses and other nano-sized particles.
|
4 |
Image processing through machine learning for wood quality classification / Processamento de imagens através de aprendizado de máquinas para a classificação da qualidade da madeiraVieira, Fábio Henrique Antunes [UNESP] 30 June 2016 (has links)
Submitted by FÁBIO HENRIQUE ANTUNES VIEIRA null (curso_structural@hotmail.com) on 2016-08-03T12:43:17Z
No. of bitstreams: 1
Fábio Henrique Antunes Vieira TESE.pdf: 4977174 bytes, checksum: f3e115728925e457e12dd4a79c93812a (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-04T19:15:49Z (GMT) No. of bitstreams: 1
vieira_fha_dr_guara.pdf: 4977174 bytes, checksum: f3e115728925e457e12dd4a79c93812a (MD5) / Made available in DSpace on 2016-08-04T19:15:49Z (GMT). No. of bitstreams: 1
vieira_fha_dr_guara.pdf: 4977174 bytes, checksum: f3e115728925e457e12dd4a79c93812a (MD5)
Previous issue date: 2016-06-30 / A classificação da qualidade da madeira é indicada para indústria de processamento e produção desse material. Essas empresas têm investido em soluções para agregar valor à matéria-prima, com o intuito de melhorar resultados, observando os rumos do mercado. O objetivo deste trabalho foi comparar Redes Neurais Convolutivas, um método de aprendizado profundo, na classificação da qualidade de madeira, com outras técnicas tradicionais de Máquinas de aprendizado, como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais, em conjunto com Descritores de Textura. Isso foi possível através da verificação do nível de acurácia das experiências com diferentes técnicas, como Aprendizado Profundo e Descritores de Textura no processamento de imagens destes objetos. Foi utilizada uma câmera convencional para capturar as 374 amostras de imagem adotadas no experimento, e a base de dados está disponível para consulta. O processamento das imagens passou por algumas fases, após terem sido obtidas, como pré-processamento, segmentação, análise de recursos e classificação. Os métodos de classificação se deram através de Aprendizado Profundo e por meio de técnicas de Aprendizado de Máquinas tradicionais como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais juntamente com os Descritores de Textura. Os resultados empíricos para o conjunto de dados das imagens da madeira serrada mostraram que o método com Descritores de Textura, independentemente da estratégia empregada, foi muito competitivo quando comparado com as Redes Neurais Convolutivas para todos os experimentos realizados, e até mesmo superou-as para esta aplicação. / The quality classification of wood is prescribed throughout the wood chain industry, particularly those from the processing and manufacturing fields. Those organizations have invested energy and time trying to increase value of basic items, with the purpose of accomplishing better results, in agreement to the market. The objective of this work was to compare Convolutional Neural Network, a deep learning method, for wood quality classification to other traditional Machine Learning techniques, namely Support Vector Machine (SVM), Decision Trees (DT), K-Nearest Neighbors (KNN), and Neural Networks (NN) associated with Texture Descriptors. Some of the possible options were to assess the predictive performance through the experiments with different techniques, Deep Learning and Texture Descriptors, for processing images of this material type. A camera was used to capture the 374 image samples adopted on the experiment, and their database is available for consultation. The images had some stages of processing after they have been acquired, as pre-processing, segmentation, feature analysis, and classification. The classification methods occurred through Deep Learning, more specifically Convolutional Neural Networks - CNN, and using Texture Descriptors with Support Vector Machine, Decision Trees, K-nearest Neighbors and Neural Network. Empirical results for the image dataset showed that the approach using texture descriptor method, regardless of the strategy employed, is very competitive when compared with CNN for all performed experiments, and even overcome it for this application.
|
5 |
Shearlet-Based Descriptors and Deep Learning Approaches for Medical Image ClassificationAl-Insaif, Sadiq 07 June 2021 (has links)
In this Ph.D. thesis, we develop effective techniques for medical image classification, particularly, for histopathological and magnetic resonance images (MRI). Our techniques are capable of handling the high variability in the content of such images. Handcrafted techniques based on texture analysis are used for the classification task. We also use deep learning models but training such models from scratch can be a challenging process, instead, we employ deep features and transfer learning.
First, we propose a combined texture-based feature representation that is computed in the complex shearlet domain for histopathological image classification. With complex coefficients, we examine both the magnitude and relative phase of shearlets to form the feature space. Our proposed techniques are successful for histopathological image classification. Furthermore, we investigate their ability to generalize to MRI datasets that present an additional challenge, namely high dimensionality. An MRI sample consists of a large number of slices. Our proposed shearlet-based feature representation for histopathological images cannot be used without adjustment. Therefore, we consider the 3D shearlet transform given the volumetric nature of MRI data. An advantage of the 3D shearlet transform is that it takes into consideration adjacent slices of MRI data.
Secondly, we study the classification of histopathological images using pre-trained deep learning models. A pre-trained deep learning model can act as a starting point for datasets with a limited number of samples. Therefore, we used various models either as unsupervised feature extractors, or weight initializers to classify histopathological images. When it comes to MRI samples, fine-tuning a deep learning model is not straightforward. Pre-trained models are trained on RGB images which have a channel size of 3, but an MRI sample has a larger number of slices. Fine-tuning a convolutional neural network (CNN) requires adjusting a model to work with MRI data. We fine-tune pre-trained models and then use them as feature extractors. Thereafter, we demonstrate the effectiveness of fine-tuned deep features with classical machine learning (ML) classifiers, namely a support vector machine and a decision tree bagger. Furthermore, instead of using a classical ML classifier for the MRI sample, we built a custom CNN that takes both the 3D shearlet descriptors and deep features as an input. This custom network processes our feature representation end-to-end and then classifies an MRI sample. Our custom CNN is more effective in comparison to a classical ML on a hidden MRI dataset. It is an indication that our CNN model is less susceptible to over-fitting.
|
6 |
Analýza textury objektů v zorném poli kamery / Image analysis of object surface textureKlimeš, Jiří January 2021 (has links)
This master thesis deals with design and implementation of algorithms for image analysis of object surface texture for the purpose of automating the surface grinding process. In the first part of this thesis, a search was performed in the field of image analysis of object surface texture. The proposed descriptors were tested on the created annotated database of texture images. Subsequently, a scene for image acquisition of the machined object was designed and assembled, and the grinding process was automated based on the results of the previous analysis. The implementation and achieved results were evaluated and other possible improvements were proposed.
|
7 |
Caracterização de imagens de microtomografia de raios X baseada em descritores de textura / Characterization of images from X-ray microtomography based texture descriptorsSandro Roberto Fernandes 27 April 2012 (has links)
A microtomografia computadorizada (computed microtomography - μCT)
permite uma análise não destrutiva de amostras, além de possibilitar sua
reutilização. A μCT permite também a reconstrução de objetos tridimensionais a
partir de suas seções transversais que são obtidas interceptando a amostra através
de planos paralelos. Equipamentos de μCT oferecem ao usuário diversas opções de
configurações que alteram a qualidade das imagens obtidas afetando, dessa forma,
o resultado esperado. Nesta tese foi realizada a caracterização e análise de imagens
de μCT geradas pelo microtomógrafo SkyScan1174 Compact Micro-CT. A base
desta caracterização é o processamento de imagens. Foram aplicadas técnicas de
realce (brilho, saturação, equalização do histograma e filtro de mediana) nas
imagens originais gerando novas imagens e em seguida a quantificação de ambos
os conjuntos, utilizando descritores de textura (probabilidade máxima, momento de
diferença, momento inverso de diferença, entropia e uniformidade). Os resultados
mostram que, comparadas às originais, as imagens que passaram por técnicas de
realce apresentaram melhoras quando gerados seus modelos tridimensionais. / X-ray Computed Microtomography (μCT) allows a non destructive analysis of
samples besides making it possible to reuse them. μCT also allows the
reconstruction of tridimensional objects from its transverse sections obtained
intersecting the sample through parallel planes. μCT devices offer the user several
configuration options which alter the quality of the images obtained affecting, this
way, the results expected. In this study, the characterization and analysis of μCT
images generated by the X-ray tomograph scannerSkyScan1174 Compact Micro-CT
was performed. The basis of this characterization is the processing of images.
Enhancement techniques were applied (brightness, saturation, histogram
equalization and median filter) in the original images creating new images. Next, the
quantification of both sets was performed, using texture descriptors (maximum
likelihood, moment of difference, inverse difference moment , entropy and uniformity).
The results show that, compared to the originals, the images which went through
enhancement techniques had improved when their three-dimensional models were
generated.
|
8 |
Caracterização de imagens de microtomografia de raios X baseada em descritores de textura / Characterization of images from X-ray microtomography based texture descriptorsSandro Roberto Fernandes 27 April 2012 (has links)
A microtomografia computadorizada (computed microtomography - μCT)
permite uma análise não destrutiva de amostras, além de possibilitar sua
reutilização. A μCT permite também a reconstrução de objetos tridimensionais a
partir de suas seções transversais que são obtidas interceptando a amostra através
de planos paralelos. Equipamentos de μCT oferecem ao usuário diversas opções de
configurações que alteram a qualidade das imagens obtidas afetando, dessa forma,
o resultado esperado. Nesta tese foi realizada a caracterização e análise de imagens
de μCT geradas pelo microtomógrafo SkyScan1174 Compact Micro-CT. A base
desta caracterização é o processamento de imagens. Foram aplicadas técnicas de
realce (brilho, saturação, equalização do histograma e filtro de mediana) nas
imagens originais gerando novas imagens e em seguida a quantificação de ambos
os conjuntos, utilizando descritores de textura (probabilidade máxima, momento de
diferença, momento inverso de diferença, entropia e uniformidade). Os resultados
mostram que, comparadas às originais, as imagens que passaram por técnicas de
realce apresentaram melhoras quando gerados seus modelos tridimensionais. / X-ray Computed Microtomography (μCT) allows a non destructive analysis of
samples besides making it possible to reuse them. μCT also allows the
reconstruction of tridimensional objects from its transverse sections obtained
intersecting the sample through parallel planes. μCT devices offer the user several
configuration options which alter the quality of the images obtained affecting, this
way, the results expected. In this study, the characterization and analysis of μCT
images generated by the X-ray tomograph scannerSkyScan1174 Compact Micro-CT
was performed. The basis of this characterization is the processing of images.
Enhancement techniques were applied (brightness, saturation, histogram
equalization and median filter) in the original images creating new images. Next, the
quantification of both sets was performed, using texture descriptors (maximum
likelihood, moment of difference, inverse difference moment , entropy and uniformity).
The results show that, compared to the originals, the images which went through
enhancement techniques had improved when their three-dimensional models were
generated.
|
Page generated in 0.0393 seconds