• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROPRIÉTÉS AU BORD DES FONCTIONS HARMONIQUES POUR LES DIFFUSIONS, LES PROCESSUS STABLES ET LEURS PERTURBATIONS

Luks, Tomasz 12 June 2012 (has links) (PDF)
La thèse se compose de quatre articles. Dans l'article I, " Hardy spaces for the Laplacian with lower order perturbations ", on considère les espaces de Hardy des fonctions harmoniques pour le Laplacien avec une perturbation de type gardient ou de Schrödinger, sous des conditions de Kato. On y montre le théorème de représentation pour les espaces de Hardy sur les domaines bornés au bord lisse dans l'espace euclidien. L'article II, " On hardy spaces ", traite des caractérisations des espaces de Hardy et des espaces de Hardy conditionnels du Laplacien et du Laplacien fractionnaire à l'aide des identités de Hardy-Stein. Dans l'article III, " Boundary behavior of alpha-harmonic functions on the complement of the sphere and hyperplane ", on étudie les fonctions harmoniques pour le Laplacien fractionnaire sur l'espace euclidien privé d'une sphère ou d'un hyperplan. On obtient les théorèmes de représentation pour les espaces de Hardy ainsi que les théorèmes de Fatou. On établit également la formule explicite pour le noyau de Martin sur l'espace euclidien privé d'une sphère et pour la fonction de Green, le noyau de Martin et la mesure harmonique sur l'espace euclidien privé d'un hyperplan. L'article IV, " Martin représentation, Relative Fatou Theorem and Hardy spaces for fractional Laplacian with a gardient perturbation ", concerne la théorie du potentiel pour le Laplacien fractionnaire avec une perturbation de type gardient. On y montre l'existence de noyau de Martin pour les domaines bornés au bord lisse ainsi que la représentation de Martin pour les fonctions harmoniques. Le théorème de Fatou relatif et le théorème de représentation pour les espaces de Hardy y sont également établis.
2

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg

Petit, Camille 19 June 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière.
3

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg / Around geometric analysis 1) Boundary behavior of harmonic functions 2) Rectifiability in the Heisenberg group

Petit, Camille 19 June 2012 (has links)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière. / In this thesis, we are interested in two topics of geometric analysis. The first one is concerned with the asymptotic behaviour of harmonic functions in connection with geometry on graphs and manifolds. We study criteria for convergence at boundary of harmonic functions such as non-tangential boundedness, finiteness of non-tangential energy or finiteness of the energy density. We deal with Gromov hyperbolic manifolds, Gromov hyperbolic graphs, Diestel-Leader graphs and with an abstract frame to obtain criteria at minimal Martin boundary points. The methods, coming from probability theory and metric geometry, use the relation between harmonic functions and martingales. The second topic concerns the rectifiability properties of 1-dimensional sets in the Heisenberg group in connection with the boundedness of singular integral operators. We extend to this sub-Riemannian setting parts of the theory of uniformly rectifiable sets due to David and Semmes. In particular, we obtain a geometric traveling salesman theorem which provides a condition for an Ahlfors regular set of the first Heisenberg group to be contained in an Ahlfors regular curve.

Page generated in 0.068 seconds