Spelling suggestions: "subject:"théorème dde kelly"" "subject:"théorème dde jelly""
1 |
Nombres de Helly, théorèmes d'épinglement et projection de complexes simpliciauxGoaoc, Xavier 07 December 2011 (has links) (PDF)
La résolution efficace de certaines questions de géométrie algorithmique, par exemple les calculs de visibilité ou l'approximation de forme, soulève de nouvelles questions de géométrie des droites, domaine classique dont l'origine remonte à la seconde moitié du 19e siècle. Ce mémoire s'inscrit dans ce cadre, et étudie les nombres de Helly de certains ensembles de droites, un indice reliée à certains théorèmes de la base apparaissant en optimimisation combinatoire. Formellement, le nombre de Helly d'une famille d'ensembles d'intersection vide est le cardinal de sa plus petite sous-famille d'intersection vide et minimale pour l'inclusion relativement à cette propriété. En 1957, Ludwig Danzer a formulé la conjecture que pour tout $d \ge 2$ il existe une constante $h_d$ telle que pour toute famille $\{B_1, \ldots, B_n\}$ de boules deux à deux disjointes et de même rayon, le nombre de Helly de $\{T(B_1), \ldots, T(B_n)\}$ est au plus $h_d$; ici, $T(B_i)$ désigne l'ensemble des droites coupant $B_i$. Danzer a, de plus, spéculé que la constante $h_d$ (minimale) croît strictement avec $d$. Nous prouvons que de telles constantes existent, et que $h_d$ est au moins $2d-1$ et au plus $4d-1$ pour tout $d \ge 2$. Cela prouve la première conjecture et étaye la seconde. Nous introduisons, pour étudier les conjectures de Danzer, un analogue local du nombre de Helly que nous appellons nombre d'épinglement et qui se rattache à la notion d'immobilisation étudiée en robotique. Nous montrons que le nombre d'épinglement est borné pour toute famille (suffisament générique) de polyèdres ou d'ovaloides de $R^3$, deux cas où les nombres de Helly peuvent être arbitrairement grands. Un théorème de Tverberg énonce que si $\{B_1, \ldots, B_n\}$ est une famille de convexes du plan disjoints et congruents par translation alors le nombre de Helly de $\{T(B_1), \ldots, T(B_n)\}$ est au plus $5$. Quoique relativement différentes, notre preuve et celle de Tverberg exploitent toutes deux le fait que toute intersection d'au moins deux $T(B_i)$ a un nombre borné de composantes connexes, chacune contractile. Par des considérations sur l'homologie de projections de complexes et d'ensembles simpliciaux, nous unifions ces deux preuves et montrons que cette condition topologique suffit à établir une borne explicite sur le nombre de Helly.
|
Page generated in 0.0513 seconds