Spelling suggestions: "subject:"théorie dess coques minces"" "subject:"théorie deus coques minces""
1 |
Paramétrage de formes surfaciques pour l'optimisationDu Cauzé De Nazelle, Paul 27 March 2013 (has links)
Afin d’améliorer la qualité des solutions proposées par l’optimisation dans les processus de conception, il est important de se donner des outils permettant à l’optimiseur de parcourir l’espace de conception le plus largement possible. L’objet de cette Thèse est d’analyser différentes méthodes de paramétrage de formes surfaciques d’une automobile en vue de proposer à Renault un processus d’optimisation efficace. Trois méthodes sont analysées dans cette Thèse. Les deux premières sont issues de l’existant, et proposent de mélanger des formes, afin de créer de la diversité. Ainsi, on maximise l’exploration de l’espace de conception, tout en limitant l’effort de paramétrage des CAO. On montre qu’elles ont un fort potentiel, mais impliquent l’utilisation de méthodes d’optimisation difficiles à mettre en œuvre aujourd’hui. La troisième méthode étudiée consiste à exploiter la formulation de Koiter des équations de coques, qui intègre paramètres de forme et mécanique, et de l’utiliser pour faire de l’optimisation de forme sur critères mécaniques. Cette méthode a par ailleurs pour avantage de permettre le calcul des gradients. D’autre part, nous montrons qu’il est possible d’utiliser les points de contrôles de carreaux de Bézier comme paramètres d’optimisation, et ainsi, de limiter au strict nécessaire le nombre de variables du problème d’optimisation, tout en permettant une large exploration de l’espace de conception. Cependant, cette méthode est non-standard dans l’industrie et implique des développements spécifiques, qui ont été réalisés dans le cadre de cette Thèse. Enfin, nous mettons en place dans cette Thèse les éléments d’un processus d’optimisation de forme surfacique. / To improve optimized solutions quality in the design process, it is important to provide the optimizer tools to navigate the design space as much as possible. The purpose of this thesis is to analyze different parametrization methods for automotive surface shapes, in order to offer Renault an efficient optimization process. Three methods are analyzed in this thesis. The first two are closed to the existing ones, and propose to blend shapes to create diversity. Thus, we are able to maximize the exploration of the design space, while minimizing the effort for CAD setting. We show their high potential, but they involve the use of optimization methods difficult to implement today. The third method is designed to exploit the formulation of Koiter shell equations, which integrates mechanical and shape parameters, and to use it to perform shape optimization with respect to different mechanical criteria. This method also has the advantage of allowing the gradients calculation. On the other hand, we show that it is possible to use the Bezier’s control points as optimization parameters, and thus control the minimum number of variables necessary for the optimization problem, while allowing a broad exploration of the design space. However, this method is non-standard in the industry and involves specific developments that have been made in the context of this thesis. Finally, we implement in this thesis essentials elements of an optimization process for surface shapes.
|
Page generated in 0.0845 seconds