• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origin of high-grade hematite ores at Thabazimbi Mine, Limpopo Province, South Africa

28 January 2009 (has links)
M.Sc. / High-grade hematite ores at the Thabazimbi Mine, Limpopo Province, occur as stratabound bodies in the Early Paleoproterozoic Penge Iron Formation of the Transvaal Supergroup. Iron ores occur at three distinct positions in the Penge Iron Formation (i) basal ore bodies located immediately above a thin oxidised shale unit that marks the base of the Penge Iron Formation in the Thabazimbi area and that may be interpreted as a structural contact towards the underlying dolostones of the Malmani Subgroup; (ii) ore bodies developed immediately above a prominent mafic sill in the Penge Iron Formation; (iii) small, lenticular ore bodies developed in the iron-formation without apparent structural control. Ore bodies in all three stratigraphic positions formed on the expense of the Penge Iron Formation protore, they share very similar mineralogical and textural attributes and can be subdivided into three major ore types with respect to their mineralogy and physical characteristics, namely, (a) carbonate-hematite ore; (b) hard hematite ore; (c) supergene modified ore. Further subdivision into subtypes is possible based on textural attributes. The first stage of iron ore formation at the Thabazimbi deposit is marked by oxidation of ferrous minerals (carbonates and grunerite) and their replacement by hematite. Efficient leaching and replacement of chert in the iron-formation to produce high-grade hematite ores characterizes the second stage of alteration. Stable isotope and fluid inclusion evidence point to a hydrothermal origin of the iron ores. Two hydrothermal fluids were identified, namely a highly saline Ca-Mg-rich brine (S = 27 wt% NaClequiv, TH = 160ºC) and a Nadominated fluid of intermediate salinity (S = 10 wt% NaClequiv, TH = 130ºC) that is possibly of meteoric origin. The results obtained in this study are used to propose the following sequence of mineralising events for the Thabazimbi iron ore deposit: (i) Deposition of iron-formation and diagenesis; (ii) contact metamorphic alteration related to the intrusion of the Bushveld igneous complex; (iii) metasomatic oxidation, leaching and residual upgrading that is tentatively linked to structurallycontrolled hydrothermal fluid flow; (iv) supergene modification of existing high-grade ore bodies in post-Gondwana times along the old African land surface.

Page generated in 0.0681 seconds