• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 215
  • 40
  • 27
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 508
  • 508
  • 76
  • 50
  • 44
  • 43
  • 42
  • 40
  • 39
  • 38
  • 36
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Theoretical calculation of magnetic fields generated by neural currents

Ferguson, Archibald Stewart January 1991 (has links)
No description available.
102

Methods of reducing the possible health hazards of 60-Hz magnetic fields

Alnajjar, Hisham January 1988 (has links)
No description available.
103

Magnetic compression of axially symmetric Brillouin-focused electron beams /

Seeger, John Alan January 1966 (has links)
No description available.
104

Particle Acceleration Asymmetry in a Reconnecting Nonneutral Current Sheet.

Zharkova, Valentina V., Gordovskyy, Mykola 26 October 2009 (has links)
No / The acceleration of electrons and protons caused by a super-Dreicer electric field directed along the longitudinal component By of the magnetic field is investigated. The three-component magnetic field in a nonneutral current sheet occurring at the top of the reconnecting flaring loops on the charged particle trajectories and energies is considered. Particle trajectories in the reconnecting current sheet (RCS) and their energy spectra at the point of ejection from the RCS are simulated from the motion equation for different sheet thicknesses. A super-Dreicer electric field of the current sheet is found to accelerate particles to coherent energy spectra in a range of 10-100 keV for electrons and 100-400 keV for protons with energy slightly increasing with the sheet thickness. A longitudinal By component was found to define the gyration directions of particles with opposite charges toward the RCS midplane, i.e., the trajectory symmetry. For the ratio By/Bz < 10-6 the trajectories are fully symmetric, which results in particle ejection from an RCS as neutral beams. For the ratio By/Bz > 10-2 the trajectories completely lose their symmetry toward the RCS midplane, leading to the separation of particles with opposite charges into the opposite halves from an RCS midplane and the following ejection into different legs of the reconnecting loops. For the intermediate values of By/Bz the trajectories are partially symmetric toward the midplane, leading to electrons prevailing in one leg and protons in the other.
105

A comparison of flare forecasting methods, I: results from the “All-clear” workshop

Barnes, G., Leka, K.D., Schrijver, C.J., Colak, Tufan, Qahwaji, Rami S.R., Ashamari, Omar, Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C. 05 July 2016 (has links)
Yes / Solar flares produce radiation which can have an almost immediate effect on the near-Earth environ- ment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using photospheric magnetic field observations has prolifer- ated, with varying claims about how well each works. Because of the different analysis techniques and data sets used, it is essentially impossible to compare the results from the literature. This problem is exacerbated by the low event rates of large solar flares. The challenges of forecasting rare events have long been recognized in the meteorology community, but have yet to be fully acknowledged by the space weather community. During the interagency workshop on “all clear” forecasts held in Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common data sets, specifically line-of-sight magnetic field and continuum intensity images from MDI, with consistent definitions of what constitutes an event. We demonstrate the importance of making such systematic comparisons, and of using standard verification statistics to determine what constitutes a good prediction scheme. When a comparison was made in this fashion, no one method clearly outperformed all others, which may in part be due to the strong correlations among the parameters used by different methods to characterize an active region. For M-class flares and above, the set of methods tends towards a weakly positive skill score (as measured with several distinct metrics), with no participating method proving substantially better than climatological forecasts. / This work is the outcome of many collaborative and cooperative efforts. The 2009 “Forecasting the All-Clear” Workshop in Boulder, CO was sponsored by NASA/Johnson Space Flight Center’s Space Radiation Analysis Group, the National Center for Atmospheric Research, and the NOAA/Space Weather Prediction Center, with additional travel support for participating scientists from NASA LWS TRT NNH09CE72C to NWRA. The authors thank the participants of that workshop, in particular Drs. Neal Zapp, Dan Fry, Doug Biesecker, for the informative discussions during those three crazy days, and NCAR’s Susan Baltuch and NWRA’s Janet Biggs for organizational prowess. Workshop preparation and analysis support was provided for GB, KDL by NASA LWS TRT NNH09CE72C, and NASA Heliophysics GI NNH12CG10C. PAH and DSB received funding from the European Space Agency PRODEX Programme, while DSB and MKG also received funding from the European Union’s Horizon 2020 research and in- novation programme under grant agreement No. 640216 (FLARECAST project). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/MPR. YY was supported by the National Science Foundation under grants ATM 09-36665, ATM 07-16950, ATM-0745744 and by NASA under grants NNX0-7AH78G, NNXO-8AQ90G. YY owes his deepest gratitude to his advisers Prof. Frank Y. Shih, Prof. Haimin Wang and Prof. Ju Jing for long discussions, for reading previous drafts of his work and providing many valuable comments that improved the presentation and contents of this work. JMA was supported by NSF Career Grant AGS-1255024 and by a NMSU Vice President for Research Interdisciplinary Research Grant.
106

A comparison of flare forecasting methods. II. Benchmarks, metrics and performance results for operational solar flare forecasting systems

Leka, K.D., Park, S-H., Kusano, K., Andries, J., Barnes, G., Bingham, S., Bloomfield, D.S., McCloskey, A.E., Delouille, V., Falconer, D., Gallagher, P.T., Georgoulis, M.K., Kubo, Y., Lee, K., Lee, S., Lobzin, V., Mun, J., Murray, S.A., Nageem, T.A.M.H., Qahwaji, Rami S.R., Sharpe, M., Steenburgh, R., Steward, G., Terkilsden, M. 25 July 2019 (has links)
Yes / Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand solar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al. 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to – for the first time – directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the “no skill” level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and today’s performance benchmarks against which improvements and new methods may be compared.
107

Aspects of three-dimensional MHD : magnetic reconnection and rotating coronae

Al-Salti, Nasser S. January 2010 (has links)
Solutions of the magnetohydrodynamic (MHD) equations are very important for modelling laboratory, space and astrophysical plasmas, for example the solar and stellar coronae, as well as for modelling many of the dynamic processes that occur in these different plasma environments such as the fundamental process of magnetic reconnection. Our previous understanding of the behavior of plasmas and their associated dynamic processes has been developed through two-dimensional (2D) models. However, a more realistic model should be three-dimensional (3D), but finding 3D solutions of the MHD equations is, in general, a formidable task. Only very few analytical solutions are known and even calculating solutions with numerical methods is usually far from easy. In this thesis, 3D solutions which model magnetic reconnection and rigidly rotating magnetized coronae are presented. For magnetic reconnection, a 3D stationary MHD model is used. However, the complexity of the problem meant that so far no generic analytic solutions for reconnection in 3D exist and most work consists of numerical simulations. This has so far hampered progress in our understanding of magnetic reconnection. The model used here allows for analytic solutions at least up to a certain order of approximation and therefore gives some better insight in the significant differences between 2D and 3D reconnection. Three-dimensional numerical solutions are also obtained for this model. Rigidly rotating magnetized coronae, on the other hand, are modeled using a set of magnetohydrostatic (MHS) equations. A general theoretical framework for calculating 3D MHS solutions outside massive rigidly rotating central bodies is presented. Under certain assumptions, the MHS equations are reduced to a single linear partial differential equation referred to as the fundamental equation of the theory. As a first step, an illustrative case of a massive rigidly rotating magnetized cylinder is considered, which somehow allows for analytic solutions in a certain domain of validity. In general, the fundamental equation of the theory can only be solved numerically and hence numerical example solutions are presented. The theory is then extended to include a more realistic case of massive rigidly rotating spherical bodies. The resulting fundamental equation of the theory in this case is too complicated to allow for analytic solutions and hence only numerical solutions are obtained using similar numerical methods to the ones used in the cylindrical case.
108

Things that go bump in the light : an investigation into the effects of stellar activity on extrasolar planets

Llama, Joseph January 2014 (has links)
The search for planets orbiting stars other than the Sun has led to the discovery of over one thousand new worlds. The majority of these planets have been very large, Jupiter sized planets located very close to their host star. Transit surveys such as Kepler and SuperWASP monitor thousands of stars looking for periodic dips in light caused by a planet passing between our view point on Earth and their host star, blocking a fraction of the emitted star light. One of the primary limitations in detecting a small, Earth sized planet comes from stellar activity induced signals within the data collected by exoplanet missions. These signals can, however, be used to our advantage. In this thesis, asymmetries in transit light curves are exploited to reveal properties of both the planet and the host stars themselves. An asymmetry in the near-ultraviolet transit light curve of WASP-12b, one of the largest and hottest planets found to date is thought to be caused by the stellar wind interacting with the magnetic field surrounding the planet. In this thesis, a model for such an interaction is developed and is shown to be consistent with the observations, providing the first potential evidence for the presence of a magnetic field around an exoplanet. The model is then extended to predict the shape of near-ultraviolet light curves around HD 189733b, another hot Jupiter that orbits a very bright star. By looking at the variability in these transit light curves over time, the evolution and structure of the stellar wind is investigated. By tracking the position of bumps in the transit light curve, it is shown here that the data collected by missions such as Kepler has the potential to reveal stellar butterfly patterns. Such patterns are intrinsically linked with the stellar dynamo which governs the properties of the stellar magnetic field. Finally, the support of large-scale magnetic loops on young stars is investigated. These loops trap large amounts of hot, dense material and so a rapid destabilisation could lead to a flaring event, which could have devastating consequences for a nearby exoplanet.
109

Electromechanical Modeling and Open-Loop Control of Parallel-Plate Pulsed Plasma Microthrusters with Applied Magnetic Fields

Laperriere, David Daniel 26 June 2005 (has links)
"The pulsed plasma thruster (PPT) is an onboard electromagnetic propulsion device currently being considered for use in various small satellite missions. The work presented in this thesis is directed toward improving PPT performance using a control engineering approach along with externally applied magnetic fields. An improved one dimensional electromechanical model for PPT operation is developed. This slug model represents the PPT as an LRC circuit with a dynamics equation for the ablated plasma. The improved model includes detailed derivation for the induced magnetic field and a model for the plasma resistance. A modified electromechanical model for the case of externally applied magnetic fields is also derived for the parallel plate geometry. A software package with a graphical user interface (GUI) is developed for the simulation of various PPT types, geometric configurations, and parameters The simulations show excellent agreement with data from the Lincoln Experimental Satellite (LES)-6, the LES-8/9 PPT and the Univ. of Tokyo PPT. The control objective employed in this thesis involves the maximization of the specific impulse and thrust efficiency of the PPT, which are each directly related with the exhaust velocity of the thruster. This objective is achieved through the use of an externally applied magnetic field as a system actuator. To simulate an open-loop constant-input controller the modified electromechanical PPT model is applied to the various PPT configurations. In this controller the external magnetic field was applied as constant throughout or portions of the PPT channel. For the Univ. of Tokyo PPT a magnetic field applied over the entire 6-cm long channel increases the specific impulse and thrust efficiency by 10% over the case that the filed is applied in the first 1.75 cm of the PPT channel. The magnitude of these increases compare well with the results of the UOT applied B-field experiments. For the LES-6 and LES-9 PPTs, the simulations predicts significant performance enhancements with approximately linear increases for the specific impulse, thrust efficiency and impulse bit. "
110

Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line

Coker, Zachary 05 1900 (has links)
While many investigations have been performed to establish a better understanding of the effects that magnetic fields and nanoparticles have on cells, the fundamental mechanisms behind the interactions are still yet unknown, and investigations on concurrent exposure are quite limited in scope. This study was therefore established to investigate the biological impact of concurrent exposure to magnetic nanoparticles and extremely-low frequency magnetic fields using an in-vitro CHO-K1 cell line model, in an easily reproducible manner to establish grounds for further in-depth mechanistic, proteomic, and genomic studies. Cells were cultured and exposed to 10nm Fe3O4 nanoparticles, and DC or low frequency (0Hz, 50Hz, and 100Hz) 2.0mT magnetic fields produced by a Helmholtz coil pair. The cells were then observed under confocal fluorescence microscopy, and subject to MTT biological assay to determine the synergistic effects of these concurrent exposures. No effects were observed on cell morphology or microtubule network; however, cell viability was observed to decrease more drastically under the combined effects of magnetic field and nanoparticle exposures, as compared to independent exposures alone. It was concluded that no significant difference was observed between the types of magnetic fields, and their effects on the nanoparticle exposed cells, but quite clearly there are deleterious synergistic effects of these concurrent magnetic field and nanoparticle exposure conditions.

Page generated in 0.0857 seconds