• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 21
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hanover Bluffs : connections between the inner and outer landscapes.

Burnett, Gregory William January 1979 (has links)
Thesis. 1979. M.Arch.--Massachusetts Institute of Technology. Dept. of Architecture. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH. / Bibliography: p. 101-102. / M.Arch.
22

Influence of the Mississippi River plume on diazotroph distributions in the northern Gulf of Mexico during summer 2011

Knapke, Ellen Marie 09 November 2012 (has links)
In the subtropical oligotrophic ocean, nitrogen fixation is an important source of new nitrogen (N) for supporting biological production. Previous studies have found that nitrogen-fixing Diatom-Diazotroph Associations (DDAs) are in high abundance in the intermediate salinity zone of large river plumes such as the Amazon and Mekong rivers, while Trichodesmium spp. becomes more abundant at higher salinities. This recurring pattern in the Amazon River plume suggests that strong salinity and nutrient gradients within the river plumes may lead to a cascade in diazotroph communities. I hypothesized that the Mississippi River, a major source of freshwater, nutrients and sediments to the northern Gulf of Mexico, creates a similar distribution of diazotroph communities. The relationship between large diazotrophs and salinity was examined in samples collected in July 2011 during a flood outflow from the Mississippi River. The dominant DDA, Hemiaulus spp. – Richelia spp., was at greatest abundance (≈31,000 cells L-1) west of the birdfoot delta on the periphery of the plume (≈29 salinity) where bottom water hypoxia was also observed. Trichodesmium spp., a cyanobacterium genus that occurs in both colonial and free trichome morphologies, was abundant at both high (≈35) salinities east of the delta reaching 20+ colonies L-1, as well as in the fresher (≈28) waters of the plume where it reached 3,500 trichomes L-1. Diazotroph distributions were separated east and west of the Mississippi River outflow, with DDAs being most abundant over bottom water hypoxic regions to the west and Trichodesmium spp. in high abundance to the east. The diazotroph – salinity gradient relationships present within the Amazon River plume were not present within the Gulf of Mexico. This study suggests that environmental factors other than salinity, such as nutrients or hypoxia, are influencing the distribution of diazotrophs around the Mississippi River plume. The seasonal hypoxia seen in the Gulf of Mexico with the co-occurring DDA increase could appear in other river systems. / text
23

The Mississippi gorge successive adjustments to the environment : La Crosse, Wisconsin, to Winona, Minnesota /

Tillman, Arthur G. January 1928 (has links)
Thesis (Ph.D.) University of Wisconsin--Madison, 1928. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 163-167).
24

Mark Twain and the American steamboat

Leshock, Marcus. VandeCreek, Drew E. January 2005 (has links)
Thesis (M.A.)--Northern Illinois University, 2005.
25

Metallogenic evolution of the southern Appalachian Orogenic Belt and Mississippi Valley

Maassen, Larry W 03 April 2013 (has links)
Plate tectonic theory provides logical explanations for the major tectonic events in the eastern US during Paleozoic time. The details of these tectonic events are becoming more apparent with the accumulation of new data, especially radiometric age dates. When plate tectonic theory is applied to specific tectonic events for which there is no substantial evidence, such as intracontinental hotspot rifting environments and Precambrian subduction zones, the proposed models may become very speculative. A misconception concerning the geology of the central US is that this region is structurally stable. However, geologists are currently paying considerable attention to the interlocking network of faults that in a general way follow the 38th parallel of latitude from west-central Virginia into Central Missouri (and may extend farther to the east and west). Most of the displacement along this zone occurred during the Precambrian, but different parts have moved during several periods of post-Precambrian time. In the basement the lineament may be a wide fracture zone that extends deep into the crust and is thus responsible for the magmatic iron deposits of the Southeast Missouri and may be either directly or indirectly responsible for the localization of the Mississippi Valley type deposits that occur sporadically along its length. Whether or not plate-tectonic processes operated during the Precambrian is open to speculation and the lineament may or may not be related to plate tectonic activity, but it is obvious that throughout time inherent zones of weakness are important in the localization of ore deposits. The occurrence of several major mineral districts at the intersections of the 38th parallel lineament with other major structural features, particularly in some uplifted areas and fault zone intersections, suggests that other similar structural uplifts and fault-zone intersections should be investigated for undiscovered new districts or extensions of known districts. Small uneconomic mineral occurrences along fault zones intersecting the lineament may merit further examination as they may be indications of undiscovered deposits at depth. The overall tectonic environment in the Appalachian region was an important control on the localization of massive sulfide, gold, titanium, and tungsten deposits. The deposits occur in clusters, either in Late Precambrian spreading centers and associated rift systems related to the breakup of proto-Pangea, or in Eocambrian and Devonian low-potassium tholeiitic volcanic and plutonic rocks associated with the volcanic island arc systems which developed during the closing of the Iapetus Ocean. Feiss and Hauck (1980) are confident that moderate sized (1-10 million ton) massive sulfide deposits are yet to be found at depth in these regions of the southern Appalachians, but large (greater than 20 million ton) massive sulfide deposits are unlikely to exist. The Mississippi Valley carbonate-hosted deposits of lead-zinc-baritefluorite, that occur to some extent throughout the Paleozoic section, and the Silurian "Clinton" iron ores owe their origin and distribution to normal sedimentary and diagenetic processes resulting from the transgressions of the epeiric seas. Others, such as the residual deposits of managnese iron, and aluminum, owe their existence to the afore mentioned processes, but must also have had subsequent exposure to the concentrating mechanism of weathering in a stable environment. The Mississippi Valley type occur primarily around paleo-basement highs and paleoshorelines; therefore, the formation of domes and arches within the continental interior during bathygenic episodes was a major factor controlling the localization of these deposits. These broad upwarps were preferential sites for reefal development and facies changes, and, during epeirogenic periods, these positive features have resulted in erosion and karsting of the the carbonate rocks by meteoric waters and have thus been prepared for mineralization. Deposits of this type are most common below a pre-Middle Ordovician unconformity and should be sought along major domes and arches, and along major lineaments. The association of Applachian type deposits with arches is indeterminate because a structure as subtle as an arch would be difficult to detect following overprinting by the deformation of the Alleghany orogeny; however, there is no reason to suspect that this type of positive feature did not play a role in their location. In conclusion, plate movements were a major control on the Paleozoic tectonic history of the eastern US and were also the primary control on the localization of the base metal, gold, tungsten, chromite, and titanium deposits of the southern Appalachians. However, important sedimentary and diagenetic deposits were localized primarily by arch, dome, and basin development during bathygenic episodes. Whether these submergent episodes are the result of plate motion or whether plate motion is indirectly related to submergent episodes, as suggested by Sloss and Speed (1974), remains a problem that needs to be investigated and debated further. / KMBT_363 / Adobe Acrobat 9.53 Paper Capture Plug-in
26

Geomorphic History of the Atchafalaya Backwater Area: Upper Deltaic Plain Development

Britsch, Louis D. 15 December 2007 (has links)
Earlier researchers have produced conceptual models of Mississippi River delta plain development which divide the deltaic plain into upper and lower reaches. The upper deltaic plain has been described as an area composed mainly of lacustrine, lacustrine delta, backswamp, and crevasse channels, with minimal distributary development. The lower deltaic plain is characterized by numerous distributaries forming distributary systems and lobes. Detailed geomorphic mapping and chronologic reconstruction within the Atchafalaya Backwater Area of the upper deltaic plain of the Mississippi River has led to the recognition of a complex network of distributary development related to three distinct distributary systems that formed in the upper deltaic plain over the past 2500 years. These systems do not fit previous models of upper deltaic plain development. The East Atchafalaya Basin Protection Levee blocked Atchafalaya River water and sediment from entering the study area and burying these older distributary systems, preserving their surface expression and allowing their identification. Results show that distributary systems can be a major contributor to upper deltaic plain development and that these systems are not always related to the lower delta plain delta switching process. A stable Mississippi River position and a favorable gradient in the study area over the past 4,000 years appear to be responsible for the geomorphic development of the study area.
27

Science, style and the study of community structure : an example from the Central Mississippi River Valley /

Lipo, Carl P. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Accompanied by CD-ROM of data and programs used in analyses. Includes bibliographical references (leaves [437]-474).
28

3D seismic geomorphology and stratigraphy of the late Miocene to Pliocene Mississippi River Delta : fluvial systems and dynamics

Armstrong, Christopher Paul 20 July 2012 (has links)
This study uses a 1375 km2 3D seismic dataset located in the late Miocene to Pliocene Mississippi River Delta in order to investigate the external characteristics, lithology, and evolution of channelized deposits within the seismic survey. Fluvial thicknesses range from about 11 m to 90 m and widths range from about 100 m to 31 km. Channel fill can be generalized as sandy with low impedance and high porosity (~ 35%), though heterogeneity can be high. Three distinct fluvial styles were recognized: incised valleys, channel-belts, and distributive channel networks. Fluvial styles were interpreted as a result of changes in sea-level and a speculative late Miocene to Pliocene Mississippi River Delta sea-level curve constructed using these relationships. Additionally, a characteristic interval between the major changes in fluvial style was found. These fluvial systems interact with and are affected by other elements in the landscape. Growth faults in particular are common within the survey area; however, the dynamic between fluvial systems and growth fault related subsidence has been poorly understood and so was also a focus of this project. Previous work as well as this study found little evidence that growth faults are able to affect the course or geometry of the majority of small (with most < 500 m in width and < 20 m in depth) channels. However, the relationship between growth faults and larger scale channel-belt systems (between 1 km and 5 km in width and > 25 m in depth) has not been previously evaluated in this area. In contrast to the majority of small distributary channels found within the survey, channel-belts appear to be steered by growth faults. Fluvial response or insensitivity to fault induced subsidence is related to the relative timescales of avulsion and faulting. Channel-belts are longer lived features than more ephemeral small distributary channels. Channel-belts, due to their relatively low mobility compared to small channels, are more likely to experience punctuated faulting events which results in greater apparent sensitivity to faulting than seen in small channels. / text
29

Changes in recent effective discharge and geomorphology near the Old River Control on the lower Mississippi River

Knox, Richard Leo 30 October 2013 (has links)
The Mississippi River is considered the ultimate single channel meandering river. Five hundred km upstream from its mouth, about 25% of the river’s discharge is diverted into the Atchafalaya River. This diversion is controlled by the Old River Control structure, built by the US Army Corps of Engineers in stages since 1963, to stop the avulsion of the Mississippi River into the Atchafalaya. The study area is a 119 km sandy bedded reach near Old River Control that is highly impacted by engineering measures. Channel dimensions average 1,000 m wide with average thalweg depths of 23 m. The mean annual discharge is 15,000 m3s-1 with a water surface slope of 0.06 m per river mile. In a sandy bedded river, the effective discharge is the discharge which cumulatively transports the most sand. This study evaluates how the Old River Control structure has influenced an adjusting effective discharge between 1978 and 2011. The bed load component of sand transport is included by employing a novel, automated, cross-correlation technique. It was found that the upper limit for discharges that cumulatively transport 85% of the total sand load has decreased from 34,000 m3s-1 to 28,000 m3s-1 between 1978 and 2011. Sand transport from 1982 to 2011 occurred during progressively greater ratios of water discharge to the Atchafalaya River and corresponded to an aggradational trend in the nearby Mississippi River at Red River Landing stream gage. The combination of this sand transport trend and nearby channel aggradation is some indication that the diversion may not be stable and that the avulsion of the lower Mississippi River is ongoing. However, sand was transported at similar discharge ratios in the 1978 to 1982 and 2002 to 2011 periods. Future trends will reveal definitively if these findings indicate that the lower Mississippi River avulsion is continuing. Two aims are pursued by placing the effective discharge approach into the geomorphologic context of the study area. Ten zones are categorized by four distinct geomorphologic classes: meander, no islands; meander, geologic control; meander, islands and divided flow; and straight zones. One, these classes have merit for future research and are shown to be geomorphologically distinct in several ways: natural levee height and channel planform adjustment relationships, sinuosity and width to depth ratios, and bedform depth to height scaling. Two, this approach allows the comparison of the effective discharge to the study area’s geomorphology. Process-form linkages can be made between sediment transporting events and the three levels in a fluvial hierarchy: fluvial bedforms and channels, bars, and levees. Median grain size and channel position of sediment samples from these three levels were plotted on combined LiDAR and bathymetric derived cross- sections from specific geomorphologic zones. This analysis indicates that the fluvial hierarchy coincides with the stages of effective discharge but seems to scale to the elevation of natural levees. This study interjects a geomorphologic approach into the lower Mississippi River discourse and raises a number of interesting questions for further research. / text
30

The Paleoenvironment of the Lower Mississippi River Delta During the Late Holocene

Simpson, Simmone 10 May 2014 (has links)
Palynological, lithological, loss-on-ignition, and X-ray fluorescence spectroscopy data were collected from a modified Livingstone core retrieved from Bay Jimmy, Louisiana. This data indicates a slow, general regression of the marsh due to sea level rise. This trend was punctuated by several catastrophic events including floods from around ca. 600 Yr BP and ca. 360 Yr BP, a fire around ca. 950 Yr BP, and still more flooding caused by the landfall of Hurricane Audrey in AD 1957, and Hurricanes Katrina and Rita in AD 2005. In more recent years (220 Yr BP to present) the marsh appears to have thinned out. This may be due to anthropogenic barriers, which have inhibited the marsh’s natural retreat as witnessed over the past 1200 years recorded by this core.

Page generated in 0.1266 seconds