• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 67
  • 57
  • 35
  • 35
  • 9
  • 9
  • 8
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 603
  • 603
  • 437
  • 69
  • 68
  • 67
  • 57
  • 57
  • 56
  • 55
  • 51
  • 51
  • 50
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integrated approaches to elucidate the genetic architecture of congenital heart defects

Al Turki, Saeed January 2014 (has links)
Congenital heart defects (CHD) are structural anomalies affecting the heart, are found in 1% of the population and arise during early stages of embryo development. Without surgical and medical interventions, most of the severe CHD cases would not survive after the first year of life. The improved health care for CHD patients has increased CHD prevalence significantly, and it has been estimated that the population of adults with CHD is growing ~5% per year. Understanding the causes of CHD would greatly help improve our knowledge of the pathophysiology, family counseling and planning and possibly prevention and treatment in the future. The aim of my thesis was to identify novel or known CHD genes enriched for rare coding genetic variants in isolated CHD cases and learn about the relative performance of different study designs. High-throughput next generation sequencing (NGS) was used to sequence all coding genes (whole exome) coupled with various analytical pipelines and tools to identify candidate genes in different family-based study designs. Since there is no general consensus on the underlying genetic model of isolated CHD, I developed a suite of software tools to enable different family-based exome analyses of de novo and inherited variants (chapter 2) and then piloted these tools in several gene discovery projects where the mode of inheritance was already known to identify previously described and novel pathogenic genes, before applying them to an analysis of families with two or more siblings with CHD. Based on the tools developed in chapter 2, I designed a two-stage study to investigate isolated parent-offspring trios with Tetralogy of Fallot (chapter 3). In the first stage, I used whole exome sequence data from 30 trios to identify genes with de novo coding variants. This analysis identified six de novo loss-of-function and 13 de novo missense variants. Only one gene showed recurrent de novo mutations in NOTCH1, a well known CHD gene that has mostly been associated with left ventricle outflow tract malformations (LVOT). Besides NOTCH1, the de novo analysis identified several possibly pathogenic novel genes such as ZMYM2 and ARHGAP35, that harbor de novo loss-of-function variants (frameshift and stop gain, respectively). In the second stage of the study, I designed custom baits to capture 122 candidate genes for additional sequencing using NGS in a larger sample size of 250 parent-offspring trios with isolated Tetralogy of Fallot and identified six de novo variants in four genes, half of them are loss-of-function variants. Both of NOTCH1 and its ligand JAG1 harbor two additional de novo mutations (two stop gains in NOTCH1 and one missense and a splice donor in JAG1). The analysis showed a strongly significant over-representation of de novo loss-of-function variants in NOTCH1 (P=3.8 ×10-9). To assess alternative family-based study design in CHD, I combined the analysis from 13 isolated parent-offspring trios with 112 unrelated index cases of isolated atrioventricular septal defects (AVSD) in chapter 4. Initially, I started with a case/control analysis to test the burden of rare missense variants in cases compared with 5,194 ethnically matching controls and identified the gene NR2F2 (Fisher exact test P=7.7×10-07, odds ratio=54). The de novo analysis in the AVSD trios identified two de novo missense variants in the same gene. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. The results from luciferase assays show that all coding sequence variants observed in patients significantly alter the activity of NR2F2 target promoters. My work has identified both known and novel CHD genes enriched for rare coding variants using next-generation sequencing data. I was able to show how using single or combined family-based study designs is an effective approach to study the genetic causes of isolated CHD subtypes. Despite the extreme heterogeneity of CHD, combining NGS data with the proper study design has proved to be an effective approach to identify novel and known CHD genes. Future studies with considerably larger sample sizes are required to yield deeper insights into the genetic causes of isolated CHD.
12

Přínos Next Generation Sequencing pro laboratorní diagnostiku / Contribution of Next Generation Sequencing for Laboratory Diagnostics

Votýpka, Pavel January 2015 (has links)
5 ABSTRACT Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Bc. Pavel Votýpka Supervisor: Doc. PharmDr. Martin Beránek, Ph.D. Consultant: Mgr. Nikola Ptáková Title of diploma thesis: Contribution of Next Generation Sequencing for Laboratory Diagnostics The endeavor to sequence the whole human genome lead not only to the knowledge acquisition regarding the human genetic information but as well to the development of new sequencing methods and technologies. In order to keep up with progress in genetic field in many clinical and research laboratories the new massive parallel sequencing equipment is being utilized. On the market are currently established four leading platforms - Illumina, Solid, Ion Torrent and 454 Life Technologies. The process of sequencing analysis can be summarized into three main steps - the sequencing library preparation, sequencing itself, variant calling and data analysis. Each part of the sequencing analysis exhibits certain specifics, we need to count with and as well its pitfalls, we need to avoid or to minimalize their impact on the analysis final result. Recently new methods termed sequencing of the 3rd generation are being developed, enabling sequence of a single DNA molecule to be determined without previous...
13

The Desugn of MACPAC - A Graphics Subroutine Library Based on a Design Philosophy for the Next Generation of Graphics Packages

Vrenjak, Helen 10 1900 (has links)
This paper presents the design of a graphics subroutine library, MacPac, as a contribution to the development of a standard for future graphics packages. The need for a new graphics standard, and hence the motivation for the development of MacPac, is illustrated through a detailed discussion of existing graphics standards and systems. MacPac is based on a design philosophy developed by Mark Green for the next generation of graphics packages. It addresses the hardware and software ideas of the 80's, incorporating and building upon the valuable and tested ideas of a number of existing graphics systems. The design languages used in the development of MacPac were created by Mark Green for the design of user interfaces. This work examines the effectiveness of these languages in the design of a graphics system. / Thesis / Master of Science (MS)
14

Sequenciamento, montagem e anotação do genoma de um novo isolado de Leptospira borgpetersenii / Sequencing, assembly and genome annotation of a new isolated of Leptospira borgpetersenii

Eslabão, Marcus Redu 27 February 2012 (has links)
Made available in DSpace on 2014-08-20T13:32:45Z (GMT). No. of bitstreams: 1 dissertacao_marcus_redu_eslabao.pdf: 801425 bytes, checksum: d5a120076fe65d76b21da14d5db5817b (MD5) Previous issue date: 2012-02-27 / Leptospirosis is a neglected zoonosis with global distribution. The disease is caused by pathogenic bacteria of the genus Leptospira, which affect humans and various domestic and wild animals, causing serious problems to human health and damage to livestock. The objective of this study was to determine the genome sequence of Leptospira borgpetersenii serogroup Ballum strain 4E, isolated from domestic mice (Mus musculus), one of the main reservoirs of this genus. The complete genome sequence was determined using SOLiDTM system, which generated over 85 million 50 bp reads. These reads were used to obtain scaffolds of the two chromosomes present in this organism through the ab initio sequence assembly with Velvet and Edena softwares and orientation of contigs with G4All software. With completion of the assembly process, the large chromosome was 3,071,053 bp, GC content of 40.58%, 36 tRNA, 4 rRNA and 2,908 open reading frames (ORF). The small chromosome has 305,940 bp, GC content of 40.25%, 277 ORFs, no tRNA or rRNA. A reduction in the large chromosome of 4E strain was observed compared to the large chromosome of L550 strain, where 99 genes of L550 strain are not present in the 4E strain and about 394 kb of non-coding region was also lost. The main hypothesis for this reduction is the effect of the presence of a large number of mobile genetic elements. Genome reduction has been observed in other strains of L. borgpetersenii. The Applied Biosystems SOLiD 4 method allowed determination of the genome sequence of L. borgpetersenii strain 4E, with wide coverage and accuracy. The ab initio assembly methods used allowed for complete utilization of the sequences generated. / A leptospirose é uma zoonose negligenciada com distribuição global. A doença é causada por bactérias patogênicas do gênero Leptospira, as quais acometem humanos e vários animais domésticos e silvestres, acarretando graves problemas à saúde humana e prejuízos na pecuária. O presente trabalho teve como objetivo sequenciar o genoma da Leptospira borgpetersenii sorogroupo Ballum cepa 4E, isolada de camundongo doméstico (Mus musculus), um dos principais reservatórios deste gênero. A sequência completa do genoma foi determinada através do sistema SOLiDTM, onde foram obtidas mais de 85 milhões de leituras com tamanho de 50 pb cada. Essas leituras foram utilizadas para obtenção de scaffolds dos dois cromossomos presente neste organismo, através de montagem ab initio com os softwares Velvet e Edena; e posterior orientação das contigs com o software G4All. Com a conclusão da montagem, o cromossomo maior apresentou o tamanho de 3.071.053 pb, 40,58% de conteúdo GC, 36 tRNA, 4 rRNA e 2.908 fases de leitura abertas (ORF). Para o cromossomo menor o total de bases foi de 305.940 pb, conteúdo GC de 40,25%, 277 ORFs, nenhum tRNA e rRNA foram preditos. Foi observada uma redução do cromossomo maior da cepa 4E em ralação ao cromossomo maior da cepa L550, onde 99 genes da cepa L550 não estão presentes na cepa 4E e cerca de 394 kb de região não codificante também foi perdida. A principal hipótese para a redução é o efeito da presença de um grande número de elementos móveis, processo observado no genoma de outras cepas da espécie L. borgpetersenii. O método Applied Biosystems SOLiD 4 permitiu a determinação da sequência do genoma de L. borgpetersenii cepa 4E, com ampla cobertura e acurácia. Os metodos de montagem ab initio utilizados proporcionaram aproveitar ao máximo as sequencias geradas.
15

Heterogeneity in Ewing sarcoma

Branford White, Harriet A. January 2014 (has links)
Ewing sarcoma, an aggressive primary bone and soft tissue tumour is characterised by the expression of the chimeric transcription factor EWS-FLI1 in 90% of patients. This alters expression of many genes including activation of the Insulin Growth Factor (IGF) pathway via IGFBP3 supression. Phase I/II trials with an IGF-1 inhibitor have demonstrated tumour regression in a modest number of Ewing sarcoma patients. The aim of this thesis was to identify mechanisms contributing to the heterogeneity of resistance in Ewing sarcoma following inhibition with OSI-906, a dual kinase inhibitor of IGF-1 (IGF-1R) and Insulin (IR) receptors. The hypothesis was that mechanisms of resistance relate to heterogeneity of responses to signalling pathway activation and inhibition. Through selection, disruption of the pathway would identify subpopulations of cells both sensitive and resistant in their response allowing for interrogation of resistance mechanisms. A genome wide approach was taken to model the resistance profile of cell lines. Through developing a method of unbiased quantification, a panel of validated Ewing sarcoma cell lines (EuroBoNet) were imaged and segmented to assess the responses of biomarkers on signalling pathway activation. Heterogeneity was confirmed between cell lines. The application to diagnostic biopsies led to the identification of prognostic classifiers and cellular subpopulations with clinical prognostic significance. The distribution of Ki67 was found to be predictive of survival and cells with lower levels of CD99 in the cytoplasm were most discriminative. Parallel sequencing strategies (RNA-seq, whole exome sequencing, and aCGH/ SNP array) for genome-wide screening was carried out for point mutations, copy number changes and rearrangements. Systematic detection was used to characterise genomic rearrangements and functional validation performed. Resistant clones, formed via ENU mutagenesis of cell lines, were sequenced in order to demonstrate the resistance profile of OSI-906. In summary heterogeneity of Ewing sarcoma at the genomic and proteomic level can influence the signalling dependency of tumours and response to inhibitors. Genomic and proteomic profiling of tumour cells may be relevant to future developments of novel therapies.
16

High-throughput DNA Sequencingin Microbial Ecology : Methods and Applications

Hugerth, Luisa January 2016 (has links)
Microorganisms play central roles in planet Earth’s geochemical cycles, in food production, and in health and disease of humans and livestock. In spite of this, most microbial life forms remain unknown and unnamed, their ecological importance and potential technological applications beyond the realm of speculation. This is due both to the magnitude of microbial diversity and to technological limitations. Of the many advances that have enabled microbiology to reach new depth and breadth in the past decade, one of the most important is affordable high-throughput DNA sequencing. This technology plays a central role in each paper in this thesis. Papers I and II are focused on developing methods to survey microbial diversity based on marker gene amplification and sequencing. In Paper I we proposed a computational strategy to design primers with the highest coverage among a given set of sequences and applied it to drastically improve one of the most commonly used primer pairs for ecological surveys of prokaryotes. In Paper II this strategy was applied to an eukaryotic marker gene. Despite their importance in the food chain, eukaryotic microbes are much more seldom surveyed than bacteria. Paper II aimed at making this domain of life more amenable to high-throughput surveys. In Paper III, the primers designed in papers I and II were applied to water samples collected up to twice weekly from 2011 to 2013 at an offshore station in the Baltic proper, the Linnaeus Microbial Observatory. In addition to tracking microbial communities over these three years, we created predictive models for hundreds of microbial populations, based on their co-occurrence with other populations and environmental factors. In paper IV we explored the entire metagenomic diversity in the Linnaeus Microbial Observatory. We used computational tools developed in our group to construct draft genomes of abundant bacteria and archaea and described their phylogeny, seasonal dynamics and potential physiology. We were also able to establish that, rather than being a mixture of genomes from fresh and saline water, the Baltic Sea plankton community is composed of brackish specialists which diverged from other aquatic microorganisms thousands of years before the formation of the Baltic itself. / <p>QC 20150505</p>
17

Role of UCHL1 in regulating gene expression in prostate cancer cells

Ilic, Aleksandar 28 August 2014 (has links)
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a multifunctional protein primarily expressed in neuronal cells and involved in numerous cellular processes. UCHL1 has been linked with neurodegenerative diseases and a wide range of cancers but its specific role remains unknown. Previous UCHL1 knockdown studies have shown that UCHL1 controls the expression of pro- and anti-apoptotic genes as well as genes involved in cell cycle regulation but it is unknown how UCHL1 regulates these genes. We have shown that UCHL1 is cross-linked to DNA in DU145 but not in LNCaP or PC3 prostate cancer cells. Therefore, we hypothesized that UCHL1 regulates the expression of pro- or anti-apoptotic genes as well as the genes involved in the cell cycle through its interaction with DNA. By utilizing ChIP and ChIP-seq analyses it is possible to determine the UCHL1 target sequences on the genomic DNA. It was shown that UCHL1 is only expressed in DU145 but not in LNCaP, PC3 or C4-2 prostate cancer cell lines. Additionally, UCHL1 is expressed and cross-linked to DNA in HEK293T cells. It is believed that UCHL1 is silenced by upstream promoter methylation when it is not expressed. However, treatment with the epigenetic drugs 5-aza-2′-deoxycytidine and trichostatin A (TSA) did not result in induction of UCHL1 expression in LNCaP, PC3 or C4-2 prostate cancer cell lines. UCHL1 is also associated with p53. However, ChIP assay results have shown that UCHL1 and p53 do not bind to genomic DNA of upstream promoter regions CDKN1A and BAX genes. Additionally, through UCHL1 ChIP-seq analyses in DU145 and HEK293T cells, we discovered that UCHL1 co-localizes to the DNA with the shelterin complex shedding light on a new role of UCHL1 that has never been described before. / October 2014
18

Next-generation nematode genomes

Kumar, Sujai January 2013 (has links)
The first metazoan to be sequenced was a nematode (Caenorhabditis elegans), and understanding the genome of this model organism has led to many insights about all animals. Although eleven nematode genomes have been published so far and approximately twenty more are under way, the vast majority of the genomes of this incredibly diverse phylum remain unexplored. Next-generation sequencing has made it possible to generate large amounts of genome sequence data in a few days at a fraction of the cost of traditional Sanger-sequencing. However, assembling and annotating these data into genomic resources remains a challenge because of the short reads, the quality issues in these kinds of data, and the presence of contaminants and co-bionts in uncultured samples. In this thesis, I describe the process of creating high quality draft genomes and annotation resources for four nematode species representing three of the five major nematode clades: Caenorhabditis sp. 5, Meloidogyne floridensis, Dirofilaria immitis, and Litomosoides sigmodontis. I describe the new approaches I developed for visualising contamination and co-bionts, and I present the details of the robust workflow I devised to deal with the problems of generating low-cost genomic resources from Illumina short-read sequencing. Results: The draft genome assemblies created using the workflow described in this thesis are comparable to the draft nematode genomes created using Sanger sequencing. Armed with these genomes, I was able to answer two evolutionary genomics questions at very different scales. The first question was whether any non-coding elements were deeply conserved at the level of the whole phylum. Such elements had previously been hypothesised to be responsible for the phylum body plan in vertebrates, insects, and nematodes. I used twenty nematode genomes in several whole-genome alignments and concluded that no such elements were conserved across the whole phylum. The second question addressed the origins of the highly destructive plant-parasitic root-knot nematode Meloidogyne incognita. Comparisons with the newly sequenced Meloidogyne floridensis genome revealed the complex hybrid origins of both species, undermining previous assumptions about the rarity of hybrid speciation in animals. Conclusions: This thesis demonstrates the role of next-generation sequencing in democratising genome sequencing projects. Using the sequencing strategies, workflows, and tools described here, one can rapidly create genomic resources at a very low cost, even for unculturable metazoans. These genomes can be used to understand the evolutionary history of a genus or a phylum, as shown.
19

A novel whole system integrated genomics approach to identify key genetic components which facilitate synthetic design of a genetically engineered strain of Escherichia coli K12 with enhanced isobutanol tolerance

Basu, Piyali January 2016 (has links)
There has been an increased global interest in biofuels which provide a renewable and sustainable alternative to fossil fuels. Isobutanol is an attractive and superior alternative to the currently produced bioethanol possessing several key advantages. Previous work focuses on strategies for metabolic optimisation of carbon utilisation. However, existing solutions reach a stage where the amount of alcohol produced reaches toxic thresholds for bacteria. This inhibits growth and reduces carbohydrate consumption resulting in lower product yields rendering the biofuel production process uneconomical. In this project, a novel strategy has been adopted which uses a whole system integrated genomics approach consisting of expression profiling, selection to create isobutanol-adapted lineages, next generation sequencing, and comparative behavioural genomics to interrogate the system thoroughly and identify critical determinants of resistance to isobutanol. These were used in the highly-defined model species, E. coli K12 to deliver results of the adaptive mechanisms which take place across the entire genome. 41 gene candidates (4 previously identified in literature) were identified to play a role in isobutanol tolerance. These candidates belong to a range of functional groups such as carbohydrate metabolism, oxidative stress response, osmotic stress response; but also identified novel membrane-associated functions such as the Tol-Pal system, BAM complex and colanic acid production. The results also identify critical genes with unknown functions. The results support previous notions that central carbon metabolism shifts from aerobic to anaerobic metabolism in the presence of isobutanol, but also shows there is a transitionary phase where mixed acid fermentation pathways are utilised. This shift was previously thought to be mediated by the ArcA-ArcB two-component system. However, these results suggest the inactive 2Fe-2S core of the anaerobic-regulator Fnr is re-activated by Fe2+ to form the 4Fe-4S core transported by the FeoAB ferrous iron transport system. The strategy also identified the Tol-Pal system and show it is essential to grow in the presence of isobutanol, which is responsible for the maintaining the integrity of the cell envelope structure and increasing the rate of cell division. The BAM complex is responsible for folding and assembly of outer membrane proteins (OMP) and OMP membrane permeability- this system was found to be important for growth in isobutanol, and SurA, which is the primary OMP assembly pathway provided tolerance which was specific to isobutanol. Colanic acid, an extracellular polysaccharide is produced when the cell experiences stress, and provides protection by forming a physical barrier around the cell. The results show that the presence of colanic acid plays a large role in allowing E. coli to grow in presence of isobutanol, and its role becomes essential at critical concentrations. The results also show deletion of the negative regulator of the colanic acid gene cluster improves growth at critical and growth-inhibiting concentrations. When consolidated, these results facilitated knowledge-led based design and subsequently led to the identification of components for a synthetic design schedule, which lists the genetic manipulations proposed to exploit E. coli to enhance isobutanol tolerance.
20

Exploring next-generation sequencing in chronic lymphocytic leukemia

Ljungström, Viktor January 2016 (has links)
Next-generation sequencing (NGS) techniques have led to major breakthroughs in the characterization of the chronic lymphocytic leukemia (CLL) genome with discovery of recurrent mutations of potential prognostic and/or predictive relevance. However, before NGS can be introduced into clinical practice, the precision of the techniques needs to be studied in better detail. Furthermore, much remains unknown about the genetic mechanisms leading to aggressive disease and resistance to treatment. Hence, in Paper I, the technical performance of a targeted deep sequencing panel including 9 genes was evaluated in 188 CLL patients. We were able to validate 143/155 (92%) selected mutations through Sanger sequencing and 77/82 mutations were concordant in a second targeted sequencing run, indicating that the technique can be introduced in clinical practice. In Paper II we screened 18 NF-κB pathway genes in 315 CLL patients through targeted deep sequencing which revealed a recurrent 4 base-pair deletion in the NFKBIE gene. Screening of NFKBIE in 377 additional cases identified the mutation in ~6% of all CLL patients. We demonstrate that the lesion lead to aberrant NF-κB signaling through impaired interaction with p65 and is associated with unfavorable clinical outcome. In Paper III we sought to delineate the genetic lesions that leads to relapse after fludarabine, cyclophosphamide, and rituximab treatment. Through whole-exome sequencing of pre-treatment and relapse samples from 41 cases we found evidence of frequent selection of subclones harboring driver mutations and subsequent clonal evolution following treatment. We also detected mutations in the ribosomal protein RPS15 in 8 cases (19.5%) and characterization of the mutations through functional assays point to impaired p53 regulation in cells with mutated RPS15. Paper IV aimed at characterizing 70 patients assigned to three major subsets (#1, #2, and #4) through whole-genome sequencing. Besides recurrent exonic driver mutations, we report non-coding regions significantly enriched for mutations in subset #1 and #2 that may facilitate future molecular studies. Collectively, this thesis supports the potential of targeted sequencing for mutational screening of CLL in clinical practice, provides novel insight into the pathobiology of aggressive CLL, and demonstrates the clinical outcome and cellular effects of NFKBIE and RPS15 mutations.

Page generated in 0.096 seconds